207IHS2F2045

DocumentID

NONCD0002814

Site Name

HANCOCK COUNTRY HAMS

DocumentType

Progress/Monitoring Rpt (PRGMON)

RptSegment

1

DocDate

9/11/2007

DocRcvd

9/11/2007

Box

2F2045

AccessLevel

PUBLIC

Division

WASTE MANAGEMENT

Section

SUPERFUND

Program

IHS (IHS)

DocCat

FACILITY

RECEIVED N.C. Dept. of ENR

SEP 1 4 2007

Winston-Salem Regional Office

Groundwater Sampling Report Hancock Country Hams 3484 NC Highway 22 North Franklinville, Randolph County, North Carolina Incident No. 3700 Trigon Project No. 042-07-064

RECEIVED N.C. Dept. of ENR

SEP 14 2007

Winston-Salem Regional Office

ENGINEERING CONSULTANTS, INC.

www.trigoneng.com

P.O. Box 18846 • Zip 27419-8846 • 313 Gallimore Dairy Road • Greensboro, NC 27409 • p 336.668.0093 • f 336.668.3868

September 11, 2007

Ms. Ruth Debrito Smithfield Foods, Inc. 601 North Church Street Smithfield, Virginia 23430

Reference:

Groundwater Monitoring Report

Hancock Country Hams 3484 NC Highway 22 North Franklinville, North Carolina Trigon Project No. 042-07-064

Dear Ms. Debrito:

Trigon Engineering Consultants, Inc. (Trigon) is pleased to present our report of the surface water and groundwater sampling which took place at the referenced location.

Copies of this report have been forwarded to Mr. Stephen Williams and Mr. Colin Day of the North Carolina Department of Environment and Natural Resources (NCDENR), Mr. George House, and Mr. Stanford Baird. Trigon appreciates the opportunity to be of service to Smithfield Foods Inc. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Department Manager

Very truly yours,

TRIGON ENGINEERING CONSULTANTS, INC.

in E. Greene

Erin E. Greene

Staff Geologist

EEG/JMS:cas

Cc: Mr. Stanford Baird

Mr. George House

Mr. Stephen Williams

Mr. Collin Day

Attachments

h:\0420\projects\2007\064\r4207064.doc

HANCOCK COUNTRY HAMS GROUNDWATER AND SOIL SAMPLING REPORT

Site Name and Location Hancock Country Hams

3484 NC Highway 22 North Franklinville, North Carolina

Latitude and Longitude: 35° 46' 49" North; 79° 41' 40" West

Incident Number: 3700

Risk Classification/Reason: High

(1) A water supply well used for drinking water is located within 1,000 feet of the source area of a confirmed discharge or release.

(2) The groundwater within 500 feet of the source area of a confirmed discharge or release has the potential for future use in that there is no source of water supply other than the groundwater.

Land Use Category: Commercial/Residential

UST Owners and Responsible Parties:

1. Gwaltney of Smithfield Ltd. 601 North Church Street Smithfield, Virginia 23430

757.356.3131

Attn. Mr. Rob Bogaard, Vice President of Operations

2. Lance, Inc.

Post Office Box 32368

Charlotte, North Carolina 28232

704.554.1421

3. Ms. Julia Hancock 3456 NC Hwy 22 N. Franklinville, NC 27248

Current Land Owner: Gwaltney of Smithfield Ltd.

601 North Church Street Smithfield, Virginia 23430

757.356.3131

Attn. Mr. Rob Bogaard, Vice President of Operations

Consultant: Trigon Engineering Consultants, Inc.

Post Office Box 18846

Greensboro, North Carolina 27419-8846

Attn.: Mr. Craig D. Neil, P.G.

336.668-0093

Release Information:

Date Discovered:

October 1988

Cause of Release:

USTs in Pit B UST(s) Size (gal) and Content:

1) 1,000 - Gasoline - Pit A

2) 3,000 - Gasoline - Pit B

3) 3,000 - Gasoline - Pit B

4) 1,500 - Gasoline - Pit C

Source of Release:

UST System (Pit B)

Release Amount:

Unknown

Date of Report:

September 11, 2007

Seal and Signature of Certifying Licensed Geologist

License No. 1046

Secretary N. 3:

allino.

TABLE OF CONTENTS

1.0 BACKGROUN	D1
2.0 PURPOSE	3
3.0 RECEPTORS	3
4.1 MONITORII 4.2 WATER WE 4.3 STREAM SA	NG AND RECOVERY WELL SAMPLING
5.1 MONITORII 5.2 RECOVERY 5.3 WATER SU 5.4 STREAM SA 5.5 GROUNDW	
6.0 CONCLUSION	IS7
7.0 RECOMMENI	DATIONS9
TABLES	
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7	Properties Within 1,500 Feet of the Site with Water Wells Adjacent Property Owners Groundwater Sample Results: July 18, 2007 Historical Piezometer, Monitoring, and Recovery Well Sample Results Historical Water Well Sample Results Historical Surface Water Sample Results Summary of Monitoring Well and Groundwater Elevation Data

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map
Figure 3	Water Supply Wells within 1,500 Feet of the Site
Figure 4	Topographic Relationship of Water Wells to the Site
Figure 5	Concentrations of Benzene vs. Time in RW-3
Figure 6	Concentrations of Benzene vs. Time in RW-6
Figure 7	Concentrations of Benzene, Ethylbenzene, Toluene, and Xylenes vs. Time in RW-7
Figure 8	Concentrations of Benzene vs. Time in the South Well (SW)
Figure 9	Concentrations of Benzene vs. Time in the Ed Rhodes Well (ERW)
Figure 10	Concentrations of Benzene vs. Time in the J. Hancock Well (6)
Figure 11	Groundwater Flow Map (July 2007)
Figure 12	Chloride Isoconcentration Map (July 2007)
Figure 13	Benzene Isoconcentration Map (July 2007)
Figure 14	Ethylbenzene Isoconcentration Map (July 2007)
Figure 15	Toluene Isoconcentration Map (July 2007)
Figure 16	Xylenes Isoconcentration Map (July 2007)

APPENDICES

Appendix A	NCDENR CAP Approval Letter
Appendix B	Field Data Sampling Sheets
Appendix C	Laboratory Reports

1.0 BACKGROUND

The site is located on the east side of the NC Hwy 22 approximately three miles south of Grays Chapel, Randolph County, North Carolina (Figure 1). The site is located in a rural, mostly undeveloped, area. The majority of the houses in the area are located along NC Hwy 22, north and south of the site, and along Cedar Forest Road, located approximately a 1/3 mile south of the site.

Westinghouse Environmental Services reported that four USTs were installed at the site in 1971. The tanks consisted of one-1,000 gallon gasoline UST, two-3,000 gallon gasoline USTs (nested together), and one-1,500 gallon gasoline UST. The UST locations are shown in Figure 2. All of the USTs were reportedly removed in 1986. Limited soil analysis data was collected from the UST excavations. Russnow, Kane, and Andrews collected samples from the South Well (SW), Ed Rhodes well (ERW), and the block house well (BHW) in May/June 1988. Contaminants associated with petroleum and chlorides were detected in the groundwater samples. The chloride in the groundwater is believed to be from the ham curing facility which operated at the site from the mid 1950's to the mid 1970's.

In May 1989, Westinghouse Environmental Services (WES) submitted an Initial Site Assessment of the site. This assessment included the drilling of numerous soil test borings, drilling and installation of two monitoring wells and three piezometers, stream sampling, and associated sampling and analyses in the fall of 1988. The site assessment determined the location of contaminated soil and began to determine the extent of groundwater contamination. The assessment confirmed that petroleum and chloride contamination was present in the bedrock aquifer. Chlorides below the State's water quality standards (NCAC 2B) have been detected in the creek east of the site. Because of the large distance to the creek (1,000 feet), Trigon believes the petroleum compounds are degrading/attenuating before they reach the creek. Also during the assessment, WES removed and treated approximately 700 cubic yards of petroleum contaminated soil from the UST Pit B area.

In early 1991, Charles T. Main (CTM) was contracted to develop a remedial action plan (RAP). Their plan was submitted to the then North Carolina Department of Environment, Health, and Natural Resources (NC DEHNR) Groundwater Section Regional Office in Winston-Salem, North Carolina on April 17, 1991. The NC DEHNR is currently the Department of Environment and Natural Resources (DENR) and will be referred to in that way in this report. The NCDENR requested additional information, and a supplemental RAP was submitted to the NCDENR on September 27, 1991. Both

RAPs proposed using a pump and treat system to remediate the groundwater. The groundwater was to be pumped from seven recovery wells, treated, and discharged under an Individual NPDES permit. CTM recommended that the chloride contaminated soil be allowed to naturally remediate over time. Because of difficulties in obtaining access to discharge the effluent, in 1996, Smithfield Foods requested that the NCDENR allow the groundwater and soil be remediated through a process of natural attenuation. Following this request, on August 26, 1996, the NCDENR requested additional assessment of the site. In March 1998, a Groundwater Monitoring Report with updated sampling data was sent to the NCDENR. Upon review of the monitoring report, on May 20, 1998 the NCDENR requested additional investigation of the bedrock aquifer. A follow-up report was issued on August 23, 1999.

On October 11, 2002, the NCDENR sent our client a Notice of Regulatory Requirements requiring the submittal of a corrective action plan (CAP) to treat the petroleum contaminated soil and groundwater. Because chloride contaminated groundwater is commingled with the petroleum contamination, the CAP addressed both contaminants. On December 20, 2002 the CAP was submitted to NCDENR. The cap called for additional soil sampling in the UST B area, with excavation and disposal of any remaining contaminated soil. Groundwater contamination would be addressed with a pump and treat system incorporating an air stripper to treat the petroleum contamination and a reverse osmosis (RO) system to deal with elevated chloride concentrations. The December 2002 CAP was developed under tight time constraints and was, thus, based on the data from the 1999 sampling events. The CAP called for a new round of sampling and re-evaluation of the CAP requirements based on the analytical results.

Groundwater sampling of the recovery wells, monitoring wells, water wells and stream, and soil sampling of the UST B pit area and the salt disposal area was conducted on June 12 and 13, 2003. The results of the sampling was reported to NCDENR in an October 3, 2003 Groundwater and Soil Sampling Report. On July 30, 2003 a meeting was held at the site between our client, Mr. Stephen Williams of NCDENR and Trigon. Based on the preliminary June 2003 sampling results and a review of the site conditions, NCDENR agreed to consider modifying the December 2002 CAP to allow remediation of remaining contamination at the site by monitored natural attenuation. The modified conditions were to be allowed only if continued monitoring indicated that the contaminant plume was stable or improving. Groundwater sampling of the recovery wells, monitoring wells, water wells and the stream conducted on October 8, 2003 confirmed that both the BTEX and chloride plumes were stable and that natural attenuation of petroleum and chloride contamination in the groundwater may be occurring.

Following a review of the groundwater sampling data from the October 2003 sampling event, the NCDENR approved our client's request on November 20, 2003 to modify the December 2002 CAP to provide for natural attenuation. On February 3, 2004, Trigon submitted a CAP to modify the December 2002 CAP, which will allow the existing petroleum and chloride contaminants in the site soil and groundwater to naturally attenuate. The February 3, 2004 natural attenuation CAP was approved by the NCDENR on March 16, 2004. A copy of the approval letter is included in Appendix A.

2.0 PURPOSE

The February 2004 modified CAP recommended quarterly sampling of the stream, recovery and monitoring wells, and nearby water wells to monitor the size and shape of the petroleum hydrocarbon plume, and annual monitoring of the soil in the brine disposal area.

On July 18, 2007, groundwater and surface water samples were collected and analyzed to assess the current state; i.e. size and concentrations of the hydrocarbon plume. It is the purpose of this report to present the results of the groundwater and surface water sampling conducted at the site on July 18, 2007.

3.0 RECEPTORS

A well survey of the area in October 1996 determined that there are approximately nine water supply wells within 1,500 feet of the site (Figure 3) and another seven wells within 1,750 feet of the site. Five of these wells are separated from the site by a stream valley (Figure 4). The names and addresses of water well users within 1,500 feet of the site are shown in Table 1.

The owners of the properties located immediately adjacent to the site are listed in Table 2. Their locations are shown on Figure 3.

The hillside east of the site is dissected by numerous small gullies that feed a wet weather drainage feature located approximately 1,000 feet east of the site. This drainage feature flows into an unnamed tributary to Sandy Creek which is located approximately 1.3 miles east of the site (Figure 1).

4.0 METHODS

4.1 MONITORING AND RECOVERY WELL SAMPLING

Monitoring wells MW-1S and MW-1D and recovery wells RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, and RW-7 were sampled on July 18, 2007. The locations of the monitoring and recovery wells are shown on Figure 2. The samples were sent to SGS-Paradigm Laboratories and analyzed for volatile and aromatic hydrocarbons using EPA Method 602 plus MTBE and DIPE and for chloride.

Prior to collecting the samples, the water level in each well was measured and recorded and a minimum of three well volumes of water was removed or the well was bailed dry using either a bailer or in place electric pumps. After purging, the monitoring well samples were collected with a new disposable bailer. The recovery well samples were collected from sample ports located at the well head. The samples were collected in laboratory supplied bottles, preserved, and shipped via over night courier under chain-of-custody to SGS-Paradigm Laboratories. Field sampling data sheets are included in Appendix B. Purge water was pumped into an on-site tanker truck and hauled to Smithfield Foods facility in Bladen County.

4.2 WATER WELL SAMPLING

Eight water wells were sampled on July 18, 2007. The South Supply Well (SW) was not sampled because the pump for the plant water supply well has been turned off. The samples were sent to SGS-Paradigm Laboratories and analyzed for volatile and aromatic hydrocarbons using EPA Method 602 plus MTBE and DIPE and for chloride. The locations of the water wells are shown on Figure 2. Prior to collecting the samples, the pumps in the water wells were allowed to run for approximately five minutes to flush the lines and storage tanks. The samples were then collected from an outside faucet as close to the well as possible. The samples were collected in laboratory supplied bottles, preserved, and shipped via over night courier under chain-of-custody to Paradigm Laboratories. Field sampling data sheets are included in Appendix B.

4.3 STREAM SAMPLING

The stream located east of the site was not sampled on July 18, 2007, because it had run dry.

4.4 FIELD MEASUREMENTS

The static water level in each monitoring and recovery well sampled was measured on July 18, 2007. The water level was measured using an electronic water level meter accurate to 0.01 feet. The water level measurement data are recorded on the field sampling sheets included in Appendix B.

5.0 RESULTS

5.1 MONITORING WELLS

Chloride was detected in wells MW-1S and MW-1D above the State's 2L .0202 Standard of 250 ppm. No volatile organic compounds were detected in the samples. The laboratory results are summarized in Table 3 and the complete laboratory reports are included as Appendix C. Historical laboratory results of the monitoring wells are summarized in Table 4.

5.2 RECOVERY WELLS

The laboratory analysis of the samples from RW-3, RW-6, and RW-7 detected concentrations of benzene above the State's 2L .0202 standard. The analysis of the sample from RW-7 also detected concentrations ethylbenzene, total xylenes, and IPE above the State's 2L .0202 standards. Chloride was detected above the State's 2L .0202 standard in recovery wells RW-1, RW-2, RW-3, and RW-5. The laboratory results are summarized in Table 3 and the laboratory report is included as Appendix C. Historical laboratory results of the recovery wells are summarized in Table 4.

To track petroleum associated contaminant concentrations over time, wells that have contaminant concentrations that have exceeded the State 2L standards during more than two consecutive sampling events were used to create contaminant concentration versus time graphs. This frequency was chosen solely to provide more than a two-point line on the graph. Figures 5 and 6 show the benzene concentrations versus time in RW-3 and RW-6, respectively, and Figure 7 shows the benzene, ethylbenzene, toluene, and xylenes concentration versus time in RW-7.

5.3 WATER SUPPLY WELLS

No volatile organic compounds were detected in any of the water well samples. Chloride was detected in all the water wells, but only above the State's standard in the sample collected before the point of entry (POE) system in the Hancock (6) well. The laboratory results are summarized in Table 3 and the laboratory report is included as Appendix C. Historical laboratory results for the water wells are summarized in Table 5.

To track the petroleum associated contaminant concentrations over time, wells that have contaminant concentrations that have exceeded the State 2L standards during more than two consecutive sampling events were used to create contaminant concentration versus time graphs. Figures 8, 9, and 10 show the benzene concentrations versus time in the South well (SW), Ed Rhodes well (ERW), and Hancock well (6), respectively.

5.4 STREAM SAMPLES

There were no samples collected from the streams during the July 2007 sampling event. Chloride concentrations have not been detected above the 2L Standard in the stream for more than ten years. The historical results are summarized in Table 6.

5.5 GROUNDWATER FLOW DIRECTION

The groundwater measurements collected in July 18, 2007 were used to prepare a groundwater surface contour map (Figure 11). The data shows groundwater in both the residuum and bedrock are moving generally to the southeast toward the stream. The water level data are summarized in Table 7.

5.6 PLUME GEOMETRY

Based on the data collected during the July 2007 sampling event, chloride is concentrated in the area immediately behind (east-southeast) the plant (MW-1S and RW-3). The concentration of chloride in the Jack Hancock (6) water supply well may be the result of groundwater being drawn toward the well along a fracture oriented in a northeast-southwest direction. A diffuse plume of chloride extends to the north, southwest, and west of the plant. This larger diffuse chloride plume could be the cumulative result of

incidental spills at the plant over the last 40 years, diffusion of the chloride through the aquifer, or pumping induced movement along fractures. The current location of the chloride plume is shown in Figure 12.

Chloride concentrations had increased during the January 2007 sampling event compared to the previous sampling events in all of the recovery wells except RW-3 and in all of the water supply wells. Chloride concentrations in the Beal well (1) and the Norman well (2) had exceeded the 2L standard for the first time. Significant increases were also observed in the Gibson well (3) and the Jester well (5). However, during the March and July 2007 sampling events, chloride concentrations decreased in all the recovery wells except for RW-3 and in all of the water supply wells. The cause of the spike in chloride concentrations observed during the January 2007 sampling event is unclear. However, it is noted that the groundwater elevations observed in the recovery wells during the January 2007 sampling event were significantly lower than in the previous or subsequent sampling events. This could indicate that there was less groundwater recharge available during this period to dilute the chloride concentrations in the bedrock aquifer.

The petroleum release reportedly occurred in the area of UST Pit B. A BTEX plume extends from RW-3 to RW-7 located on the north side of the plant. The BTEX plume does not reach the creek east of the site, based on stream sampling data. The current locations of the benzene, ethylbenzene, toluene, and xylenes plumes are shown in Figures 13, 14, 15, and 16, respectively.

6.0 CONCLUSIONS

Based on the results of our investigation, we offer the following conclusions and recommendations:

1. No petroleum hydrocarbons were detected in the samples collected from the nearby water supply wells during this sampling event. Hydrocarbons associated with the UST release have consistently been detected in RW-3, RW-6, and RW-7. The concentration of hydrocarbons in RW-3 had been generally decreasing during the last two years, but has increased during the last three sampling events. The concentration of benzene in RW-6 has remained consistent over the last three years. The concentrations of benzene, ethylbenzene, toluene, and xylenes (BTEX) have consistently been the highest in RW-7 and have remained essentially unchanged during the last four years. These data indicate that the hydrocarbons plume has remained unchanged in size and

the concentration of hydrocarbons has remained unchanged in the RW-6 and RW-7 and has increased slightly in RW-3.

- 2. The shallow residuum and deep bedrock aquifers are contaminated with chlorides. All the water wells in the immediate area have detectable concentrations of chlorides, but only one exceeded the 2L Standard. Samples from the Hancock well consistently have concentrations of chlorides above the State's 2L Standard of 250 ppm. The concentrations of chlorides in the samples have remained fairly constant over the 18 year sampling history at the site.
- 3. All the residences within 1,000 feet of the site have had point-of-use reverse osmosis systems installed at the kitchen sink. In addition, a point-of-entry carbon adsorption system was installed at the Hancock residence. As a result, there is a limited risk of exposure to hydrocarbons or chloride for people in the area. The systems are maintained on a quarterly basis. However, some residents do not always allow access to their home.

7.0 RECOMMENDATIONS

Concentrations of hydrocarbons in site groundwater have remained fairly constant since the last monitoring event with the exception of RW-3. Concentrations of chloride spiked during the January 2007 sampling event but returned to previously observed trends during the March and July 2007 sampling events. Based on this, and the fact that impacted nearby residences have maintained water treatment systems, Trigon recommends continued monitoring as specified in the February 2004 Corrective Action Plan.

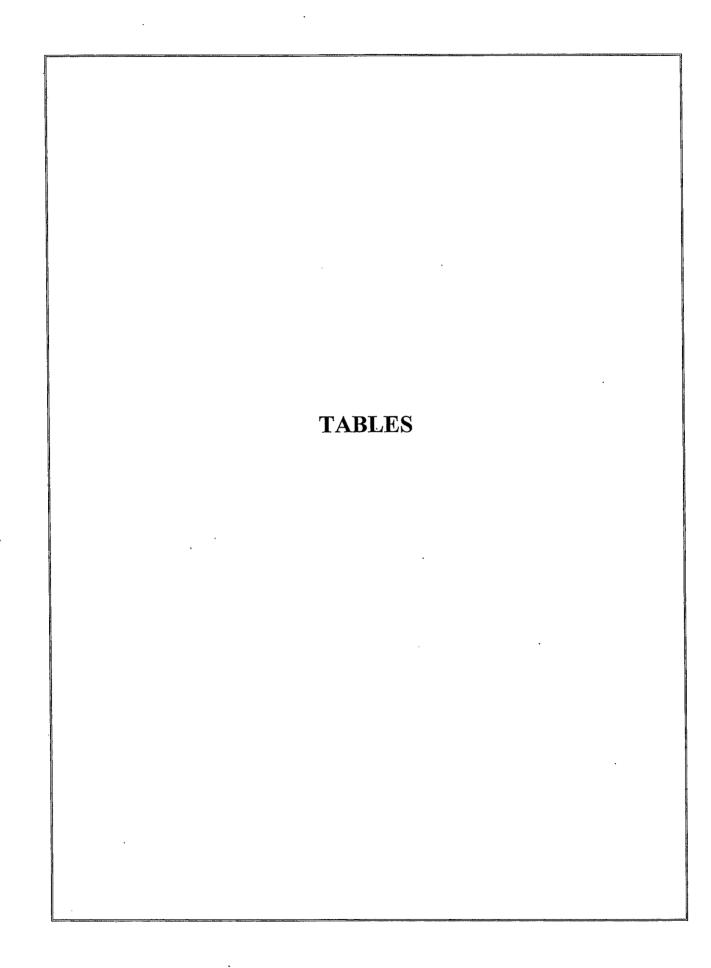


TABLE 1: PROPERTIES WITHIN 1,500 FEET OF THE SITE WITH WATER WELLS

Parcel ID No.	Property Owner	Property Address
7794400682	Sherry J. Norman	3575 NC Hwy 22N, Franklinville, NC 27248
7794403084	William E. & Jane P. Rhodes	3520 NC Hwy 22 N., Franklinville, NC 27248
7794308034	Joseph & Anne Sue Beal	3511 NC Hwy 22 N., Franklinville, NC 27248
7793491793	Hancock Old Fashion Ctry Ham	3482 NC Hwy 22N., Franklinville, NC 27248
7793491252	Julia S. Hancock	3456 NC Hwy 22 N., Franklinville, NC 27248
7793395540	Wilbert L. Hancock	1716 Academy Rd. Ext., Franklinville, NC 27248
7793394490	Terry Wesley	P. O. Box 1300, Ramseur, NC 27316
7793393252	Raymond Jester, Jr.	3419 NC Hwy 22 N., Franklinville, NC 27248
7793392064	Peggy J. Brown	3399 NC Hwy 22N., Franklinville, NC 27248
7793381857	James T. & Charlotte Kivett	3367 NC Hwy 22 N., Franklinville, NC 27248
7793582180	Richard Wallace	3519 Cedar Forest Rd, Franklinville, Nc 27248
7793580431	Irene C. Garrett	3521 Cedar Forest Rd, Franklinville, NC 27248
7793487411	Steven E. & Loretta Thompson	3505 Cedar Forest Rd, Franklinville, NC 27248

Note: Locations shown on Figure 3.

TABLE 2: ADJACENT PROPERTY OWNERS

Parcel ID No.	Property Owner	Property Address
7794403084	William E. & Jane P. Rhodes	3520 NC Hwy 22 N., Franklinville, NC 27248
7794308034	Joseph & Anne Sue Beal	3511 NC Hwy 22 N., Franklinville, NC 27248
7793491252	Julia S. Hancock	3456 NC Hwy 22 N., Franklinville, NC 27248
7793593950	George H. & Barbara Poe	3862 HardinEllison Rd., Franklinville, NC 27248
7793597552	Mark A. & Marcia Coponen	3896 HardinEllison Rd., Franklinville, NC 27248
7793395540	Wilbert L. Hancock	1716 Academy Rd. Ext., Franklinville, NC 27248

Note: Locations shown on Figure 3.

TABLE 3: GROUNDWATER SAMPLE RESULTS: July 18, 2007

	1				Monitoring and	Recovery Wells				
Compound/	MW-1S	MW-ID	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7	State 2L
•	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	Standards
Analysis		BOL	BOL	BQL	39.7	BOL	BQL	25.8	205	1
Benzene	BQL	BOL	BOL	BQL	20.1	BOL	BQL	16	193	29
Ethylbenzene	BQL		BOL	BOL	69.8	BOL ·	BOL	118	444	1,000
Toluene	BQL	BQL	BOL	BOL	84.6	BOL	BOL	147	1059	530
Total Xylenes	BQL	BQL	DQL	BQL	214.2		1	306.8	1901	
Total BTEX						BOL	BOL	BQL	BOL	200
MTBE	BQL	BQL	BQL	BQL	BQL		BOL	BOL	116	70
IPE	BQL	BQL	BQL	2.32	4.05	1.04	298	161	220	250
Chloride	1362	1329	704	440	3767	205	298	101	120	

	Т		···			Water Supply Wel	ls				
G 1/	0337	Beal (1)	Norman (2)	Gibson (3)	Presnell (4)	Jester (5)		Hancock ATS (6)	ERW	Brown (7)	State 2L
Compound/	SW		07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	07/18/07	Standards
Analysis	07/18/07	07/18/07			BOL	BOL	BQL	NS	BOL	BOL	1
Benzene	NS	BQL	BQL	BQL			BOL	NS	BQL	BOL	29
Ethylbenzene	NS	BQL	BQL	BQL	BQL	BQL		NS NS	BOL	BOL	1.000
Toluene	NS	BQL	BQL	BQL	BQL	BQL	BQL		BOL	BOL	530
Total Xylenes	NS	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	DQD	
Total BTEX		_			-						
MTBE	NS	BOL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	200
IPE	NS	BOL	BOL	BOL	BOL	BQL	BQL	NS	BQL	BQL	70
Chloride	NS	127	15	193	88	51	1265	NS	110	224	250

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater BQL- Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether ERW - Ed Rhodes Well

SW - South Well

NS - Not Sampled

BTS- Before Treatment System
ATS- After Treatment System

TABLE 4- HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
2L Standards	1	29	1,000	530		200	70	4 x 10		15	250
					Monitoring V	Wells					
W-1S								r 	I NA I	NA	NA
10/23/88	BQL	BQL	BQL	BQL		NA	NA	NA	NA NA	NA NA	3,800
11/30/88	NA	NA	NA	NA		NA	NA	NA_		21.9	9,844
10/01/96	BQL	BQL	BQL	BQL		BQL	BQL	NA	BQL	6.53	4,590
02/17/98	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA NA	12.4	3,150
06/12/03	BOL	BQL	1.9	BQL	1.9	BQL	BQL	BQL	BQL	BQL	3,200
10/08/03	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA		2,710
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	2,710
04/07/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA.	BQL NA	2,700
07/20/04	BQL	BQL	BQL	BQL	L	BQL	BQL	NA NA	NA		2,700
12/15/04	BQL	BQL	1,24	BQL	1.24	BQL	BQL	NA	NA	NA NA	2,620
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA		
08/23/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA.	2,210 1,990
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	1,700
03/08/06	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	
06/20/06	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	1,541 1,662
10/12/06	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA NA	NA_	
01/03/07	BOL	BQL	BQL	BQL		BQL	BQL	NA_	NA	NA	1,496
03/22/07	BOL	BOL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	1,346 1,362
07/18/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	1,502
		1									
MW-1D				-					T		740
11/9-10/88	BQL	BQL	BQL	BQL		NA	NA	NA.	NA	NA NA	
02/29/96	NA	NA	NA	NA		NA	NA	NA NA	NA	NA.	1,387
10/11/96	BOL	BQL	BQL	BQL		BQL	BQL	NA	BQL	112 155	1,781
02/19/98	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA		851 NS
06/12/03	NS	NS	NS	NS		NS	NS	NS	NS	NS	
10/08/03	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	23.5	1,100
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	
04/07/04	BOL	BOL	BQL	BQL		BQL	BQL	BQL	NA	BQL	1,040 987
07/20/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	NA	
12/15/04	BOL	BQL	BQL	BQL		BQL	BQL	BQL	NA	NA	1,029
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	NA	1,150
08/23/05	BQL	BOL	BQL	BQL	_	BQL	BQL	BQL	NA	NA_	1,480
12/01/05	BQL	BOL	BQL	BQL		BQL	BQL	BQL	NA	NA	1,370
03/08/06	BOL	BQL	BQL	BQL	_	BQL	BQL	BQL	NA NA	NA	1,200
06/20/06	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	NA	1,394
10/12/06	BOL	BOL	BQL	BQL		BQL	BQL	BQL	NA	NA	1,297
01/03/07	BOL	BQL	BQL	BQL	_	BQL	BQL	BQL	NA	NA	1,449
3/22/07	BOL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA	1,104
07/18/07	BOL	BQL	BQL	BOL		BQL	BQL	NA	NA	NA	1,329

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

² Sample collected by Charles T. Main

Sample collected by Smithfield Foods

Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

⁶EPA Method 504.1 with a Detection Limit of 0.02 ppb

'EPA Method 601 with a detection limit of 1 to 5 ppb

Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

10 Collected on 9/23/88

11 Sample collected by Russnow, Kane, and Andrews

144/865 - Sample collected near water table/sample collected at depth

¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bis.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

16 Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

"Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB 4 x 10	Method 601	Lead	Chloride 250
2L Standards	1	29	1,000	530		200	70	4 X IU		13	لايع
	· · · · · · · · · · · · · · · · · · ·				Recovery W	/ells					
05/26/93	NA	NA T	NA	NA		NA	NA	NA	NA	NA	473
02/17/98	BQL	BQL	BQL	BQL		BQL	20	BQL	BQL	23	284
03/23/99	BQL	BQL	BOL	BQL		BQL	13	NA	NA	NA	492
06/12/03	BOL	BOL	BQL	BQL		BQL	2.7	BQL	BQL	NA	553
10/08/03	BQL	BQL	BOL	BQL		BQL	1	NA	BQL	NA	550
01/08/04	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	BQL	NA	525
04/07/04	BQL	BOL	BQL	BOL		BQL	1.9	NA	BQL	NA	612
07/20/04	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	NA	643
12/15/04	BQL	BQL	BOL	BQL		BQL	1.07	BQL	NA NA	NA	594
03/24/05	BQL	BOL	BQL	BQL	-	BQL	BQL	NA_	NA	NA	569
08/23/05	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA	668
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	530
03/08/06	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA NA	NA	190
06/20/06	BQL	BQL	BQL	BOL		BQL	BQL	NA	NA	NA	377
10/12/06	BQL	BOL	BOL	BQL	-	BQL	BQL	NA	NA NA	NA	486
01/03/07	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA	665
03/22/07	BOL	BQL	BQL	BOL		BQL	BQL	NA	NA	NA	308
07/18/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	704
01/10/01											
W-2											
05/26/93	BOL	BQL	BQL	BQL	_	BQL	NA	NA	NA NA	NA	429
02/17/98	BQL	BOL	BQL	BQL		BQL	22	BQL	BQL	16,8	255
03/23/99	BQL	BQL	BQL	BQL		BQL	12	NA	NA	NA	419
06/12/03	1.2	BQL	1.1	BQL	2.3	BQL	BQL	BQL	BQL	5,48	575
10/08/03	BQL	BQL	BQL	BQL		BQL	1,3	NA	NA NA	BQL	370
01/08/04	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	765
04/07/04	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	627
12/15/04	BQL	BOL	BQL	BQL	_	BQL	BQL	NA	NA	NA	755
03/24/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	773
08/23/05	BQL	BQL	1.51	BQL	1.51	BQL	BQL	NA	NA NA	NA	659
12/01/05	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA	783
03/08/06	BQL	BOL	BQL	BQL		BQL	1.7	NA	NA	NA	560
06/20/06	BQL	BQL	BQL	BQL		BQL	2.3	NA	NA	NA	783
10/12/06	BQL	BQL	BQL	BQL		BQL	1,95	NA	NA_	NA	519
01/03/07	BOL	BQL	BQL	BQL	_	BQL	1.77	NA	NA	NA	641
03/22/07	BQL	BQL	BQL	BOL		BQL	2,32	NA	NA	NA	445
07/18/07	BQL	BQL	BQL	BOL		BOL	BQL	NA	NA	NA	440

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

Sample collected by Charles T. Main

³ Sample collected by Smithfield Foods

⁴ Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

⁶ EPA Method 504.1 with a Detection Limit of 0.02 ppb

"EPA Method 601 with a detection limit of 1 to 5 ppb

Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

10 Collected on 9/23/88

11 Sample collected by Russnow, Kane, and Andrews

144/865 - Sample collected near water table/sample collected at depth

12 Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

16 Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

'' Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

TABLE 4: HISTORICA Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
2L Standards	1	29	1,000	530	-	200	70	4 x 10 →		15	250
		<u></u>									
RW-3 05/26/93	NA	NA I	NA	NA		NA	NA	NA	NA	NA	1,219
03/17/98	NA NA	NA NA	NA	NA		NA	NA	NA	NA	NA	4,250
02/17/98	190	BOL	32	BOL	222	BQL	22	BQL	BQL	29.9	3,800
10/20/12	43	BQL	20	16	79	BQL	9	NA	NA NA	NA	NA
10/20/13	66	BQL	27	23	116	BQL	17	NA	NA	NA	4,250
10/20/13	180	BOL	65	74	319	BQL	21	NA	NA	NA	6,400
03/23/99	85	BQL	12	BQL	97	BQL	32	NA	NA	NA	3,423
06/12/03	45	BOL	160	219	424,00	BQL	16	BQL	BQL	5.45	4,230
10/08/03	99	84	300	560	1,043.00	BQL	79	NA	NA NA	BQL	3,800
01/08/04	110	20	99	360	589,00	BQL	30	NA	NA	BQL	4,210
04/07/04	130	18	480	650	1,278.00	BQL	91	NA	NA NA	BQL	4,850
07/20/04	74.9	67	137	253,8	532,70	BQL	BQL	NA	NA NA	NA	2,720
12/15/04	41.6	10.8	34	68.7	155,10	BQL	13.8	NA	NA .	NA	3,705
03/24/05	85.2	37.7	270	226	618.90	BQL	BQL	NA	NA_	NA	4,010
08/23/05	63.2	43.4	61.4	34,9	202,90	8	3.89	NA	NA	NA	3,290
12/01/05	54.7	7.25	BQL	26.8	88.75	BQL	12.2	NA	NA	NA	4,600
03/08/06	17	2,6	12	11	42.60	BQL	7	NA	NA	NA	4,400
06/20/06	NS	NS	NS	NS	_	NS	NS	NS	NS	NS	NS
10/12/06	NS	NS	NS	NS		NS	NS	NS	NS	NS	NS
01/03/07	2	BQL	12	4	18	BQL	BQL	NA	NA	NA	1,758
03/22/07	6,24	1.90	14 30	16.94	39.38	3.33	6.03	NA	NA	NA	3,261
07/18/07	39.70	20.10	69.80	84.60	214.20	BQL	4.05	NA	NA	NA	3,767
											
RW-4											
05/26/93	BQL	BQL	BQL	BQL	_	BQL	NA	NA	NA	NA	457
02/17/98	BQL	BOL	BQL	BQL		BQL	1	BQL	BQL	30.8	226
03/23/99	BQL	BQL	BOL	BQL		BQL	5	NA	NA	NA NA	410
06/12/03	BQL	BQL	BOL	BQL		BQL	1.7	BQL	BQL	BQL	368
10/08/03	BOL	BOL	BQL	BQL		BQL	2,8	NA	NA	BQL	400
01/08/04	BQL	BQL	BQL	BQL	_	BQL	2.2	NA	NA	BQL	304
04/07/04	BQL	BQL	BOL	BQL		BQL	2.3	NA	NA	BQL	323
07/20/04	BQL	BOL	BQL	BQL	_	BQL	1.9	NA	NA	NA	277
12/15/04	BQL	BQL	BQL	BQL		BQL	2,05	NA	NA	NA	249
03/24/05	BQL	BQL	BQL	BQL		BQL	2.33	NA	NA	NA	
08/23/05	BQL	BQL	BQL	BQL		BQL	1.81	NA	NA NA	NA	228
12/01/05	BQL	BQL	BOL	BQL		BQL	1.13	NA	NA	NA NA	220
03/08/06	BQL	BQL	BQL	BQL		BQL	1	NA	NA NA	NA	120
06/20/06	BQL	BQL	BQL	BQL		BQL	1.65	NA	NA	NA	218
10/12/06	BQL	BQL	BQL	BQL		BQL	1.57	NA	NA	NA .	217
01/03/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	428
03/22/07	BQL	BOL	BQL	BQL		BQL	1.56	NA	NA	NA NA	220
03/2207	BQL	BQL	BOL	BQL		BQL	1.04	NA	NA	I NA	1 705

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

Sample collected by Charles T. Main

³ Sample collected by Smithfield Foods

^{*}Sample collected by BPA Environmental & Engineering, Inc.
*EPA Method 602 with a detection limit of 1 to 5 ppb

[°] EPA Method 504.1 with a Detection Limit of 0.02 ppb

^{&#}x27;EPA Method 601 with a detection limit of 1 to 5 ppb

⁸ Method 239.1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

¹⁰ Collected on 9/23/88

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth ¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

¹³ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁰ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

^{1/} Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
2L Standards	Delizate	29	1,000	530		200	70	4 x 10		15	250
RW-5 05/26/93	BOL	BOL	BOL	BOL		BQL	NA	NA	NA	NA	428
02/17/98	BQL	BOL	BOL	BQL		BQL	BQL	BQL	BQL	47.9	316
03/23/99	DQL 1	BOL	BQL	BOL	1	BQL	BQL	NA	NA	NA	386
06/12/03	BOL	BOL	BQL	BOL		BQL	BQL	BQL	BQL	BQL	282
10/08/03	BOL	BQL	BOL	BQL		BQL	BQL	NA	NA	BQL	340
01/08/04	BQL	BOL	BQL	BOL		BQL	BQL	NA	NA	5,72	324
04/07/04	BOL	BOL	BQL	BQL		BQL	BQL	NA	NA	BQL	338
		BOL	BQL	BQL		BQL	BQL	NA	NA	NA	315
07/20/04	BQL BOL	BOL	BOL	BQL		BQL	BQL	NA	NA	NA	347
12/15/04		BQL	BQL	BOL		BOL	2	NA	NA	NA	345
03/24/05	BQL	BOL	BQL	BOL		BOL	BOL	NA	NA	NA	354
08/23/05	BQL		BOL	BOL		BQL	BOL	NA	NA	NA	329
12/01/05	BQL	BQL	BQL	BQL		BOL	BQL	NA	NA	NA	150
03/08/06	BQL	BQL	NS NS	NS		NS	NS	NS	NS	NS	NS _
06/20/06	NS	NS	NS NS	NS NS		NS	NS	NS	NS	NS	NS
10/12/06	NS	NS		BOL		BOL	BQL	NA	NA	NA	404
01/03/07	BQL	BQL	BQL	NS		NS	NS	NS	NS	NS	NS
03/22/07 07/18/07	NS BQL	NS BQL	NS BQL	BOL		BOL	BQL	NA	NA	NA	298
RW-6			,			NA NA	NA NA	NA NA	NA NA	NA	144/865
05/26/98	252,18	NA	12,34	236.09	500.61	NA NA	NA NA	NA NA	NA NA	NA	800
10/01/88	980	BOL	94	69	1,143	27	NA NA	ŇA	NA	NA	245
05/26/93	574	BQL	41 56	36	162	BQL	15	BQL	BQL	BQL	301
02/17/98	55	BQL	BQL	BOL		BOL	8	NA	NA	NA	615
10/21/98	BQL		BOL	BQL	5	BQL	9	NA	NA	NA	599
03/23/99	5	BQL	210	310	640	BQL	12	BQL	BQL	BQL	521
06/12/03	84	36	220	380	728	BOL	23	NA	NA	12	310
10/08/03	76	52	170	310	571	BOL	32	NA	NA	BQL	223
01/08/04	51	40	120	184	366	BQL	10	NA	NA	BQL	275
04/07/04	38	24	141	226	735	BOL	12	NA	NA	NA	219
07/20/04	41	327	110	160,5	324,7	BQL	7.5	NA	NA	NA	190
12/15/04	33.4	20.8	80.7	129.4	253.7	BQL	6,05	NA	NA	NA	195
03/24/05	25.7	17.9	124	182.7	365.9	BOL	5.82	NA	NA	NA	167
08/23/05	35,8	23.4		147	311.4	BQL	5.98	NA NA	NA	NA	185
12/01/05	31.7	15.7	117		321	BOL	5.6	NA.	NA	NA	120
03/08/06	31	20	110	160	402.3	BQL	12.3	NA NA	NA	NA	297
06/20/06	36.7	23.8	138	203.8	355	BQL	BQL	NA NA	NA NA	NA	212
10/12/06	30.7	20.5	130	173.8		BOL	BQL	NA NA	NA NA	NA	523
01/03/07	32	20	139	156	347 350.7	BQL	19 I	NA NA	NA NA	NA	212
			127	164.3				1 111			
03/22/07 07/18/07	35.6 25.8	23,8	118	147	306.8	BOL	BOL	NA	NA	NA	161

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

- bEPA Method 504.1 with a Detection Limit of 0.02 ppb
- 'EPA Method 601 with a detection limit of 1 to 5 ppb
- 8 Method 239.1 with a detection limit of 5 ppb
- Method SM4500C with a detection limit of 0.10 ppm
- 10 Collected on 9/23/88

Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

²Sample collected by Charles T. Main

³ Sample collected by Smithfield Foods

^{*}Sample collected by BPA Environmental & Engineering, Inc.
*EPA Method 602 with a detection limit of 1 to 5 ppb

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth ¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bis.

¹³ Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.

¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

[&]quot;Sample collected by Trigon Engineering Consultants, Inc.

TABLE 4: HISTORICAL MONITORING AND RECOVERY WELL SAMPLE RESULTS

TIEDES IT ISSUES				C. t. I W. James	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes		200	70	4 x 10		15	250
2L Standards	1	29	1,000	530		200					
RW-7									NA	NA I	324
5/26/1993 ²	BQL	BQL	BQL	BQL		24	NA NA	NA NA	NA NA	NA NA	211
3/29/1996 ²	NA	NA	NA	NA		NA	NA NA	0.98	BQL	213	140
2/17/1998	1,100	330	2,400	2,560	6,390	BQL	BQL83	0.98 NA	NA NA	NA NA	240
10/21/98	450	350	1,000	1,630	3430	BQL	110	NA NA	NA NA	NA	261
3/23/99	460	130	600	470	1660	BQL	BQL	BQL	BQL	BQL	293
6/12/03	440	170	1100	1,960	3,670	BQL		BQL	NA NA	BQL	350
10/8/03	410	260	790	1,480	2,940	BQL	BQL				321
1/8/2004 ¹⁷	470	320	990	1,640	3,420	BQL	120	BQL_	NA	BQL	
4/7/04	390	280	960	1,530	3,160	BQL	62	BQL	NA NA	BQL	310
7/20/04	388	269	954	1,477	3,088	BQL	63.2	NA	NA	NA	283
	361	322	981	1,354	3,018	BQL	89.9	NA	NA_	ÑΑ	299
12/15/04		289	956	1,517	3,121	BQL	BQL	NA	NA	NA	258
3/24/05	, 359		607	1,597	2,702	BQL	34	NA.	NA	NA	261
8/23/05	276	222	770	1,404	2,727	BQL	65,1	NA	NA	NA	287
12/1/05	288	265			2,760	BQL	BQL	NA	NA	NA	140
3/8/06	300	260	800	1,400		BQL	117	NA	NA	NA	276
6/20/06	226	191	505	1,419	2,341		BQL	NA.	NA.	NA	274
10/12/06	201	183	475	1,073	1,932	BQL		NA NA	NA NA	NA.	333
1/3/07	263	32.9	584	1,287	2166.9	BQL	BQL		NA NA	NA NA	220
3/22/07	218	204	495	1,030	1947	41.3	152	NA_		NA NA	220
7/18/07	205	193	444	1,059	1901	BQL	116	NA	NA	INA	220

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

PLW - Parking Lot Well

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

NS - Not sampled

¹ Sample collected by Westinghouse Environmental Services; piezometers currently inaccessible

²Sample collected by Charles T. Main

Sample collected by Smithfield Foods

⁴ Sample collected by BPA Environmental & Engineering, Inc.

EPA Method 602 with a detection limit of 1 to 5 ppb

EPA Method 504.1 with a Detection Limit of 0.02 ppb

^{&#}x27;EPA Method 601 with a detection limit of 1 to 5 ppb

⁸ Method 239,1 with a detection limit of 5 ppb

Method SM4500C with a detection limit of 0.10 ppm

¹⁰ Collected on 9/23/88

¹¹ Sample collected by Russnow, Kane, and Andrews

^{144/865 -} Sample collected near water table/sample collected at depth

¹² Sample 3C collected from Packer Test Interval 220 - 240 ft. bls.

Sample 3B Collected from Packet Test Interval 290 - 310 ft. bls.

¹⁴ Sample 3A Collected from Packer Test Interval 319 - 339 ft. bls.

 ¹⁵ Sample 6A Collected from Packer Test Interval 167 - 187 ft. bls.
 ¹⁶ Sample 7B Collected from Packer Test Interval 170 - 190 ft. bls.

¹⁷ Sample collected by Trigon Engineering Consultants, Inc.

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
	1	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
2L Standards	l				Water Supply	Vells			-		
SW-1							NA	NA	NA	NA	542
5/26/1988	BQL	NA	BQL	BQL	-	NA NA	NA NA	NA NA	NA NA	NA NA	600
8/30/1988	750	BQL	83	150	983		NA NA	NA NA	NA.	NA.	562
5/20/1993	121	BQL	8	22	151	NA 4	37	NA NA	BQL	BQL	208
10/1/1996	BQL	BQL	BQL	BQL		BQL	22	BOL	BQL	BQL	668
2/17/1998	BQL	BQL	BQL	BQL			11	BQL	BQL	BOL	553
6/12/2003	BQL	BQL	BQL	BQL		BQL	4	NA.	NA NA	6.5	390
10/8/2003	BQL	BQL	BQL	BQL		BQL	3.4	NA NA	NA.	BQL	440
1/8/2004	BQL	BQL	BQL	BQL		BQL	6.2	NA NA	NA.	BOL	298
4/7/2004	BQL	BQL	BQL	BQL		BQL	1,57	NA NA	NA NA	BQL	377
7/20/2004	BQL	BQL	BQL	BQL		BQL BOL	4.46	NA NA	NA NA	NA NA	209
12/15/2004	BQL	BQL	BQL	BQL			1,28	NA NA	NA NA	NA.	353
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA	532
8/23/2005	BQL	BQL	BQL	BQL		BQL NS	NS	NS	NS	NS	NS
6/20/2006	NS	NS	NS	NS			NS NS	NS	NS	NS	NS
10/12/2006	NS	NS	NS	NS		NS	NS NS	NS	NS	NS	NS
1/5/2007	NS	NS	NS	NS		NS	NS NS	NS	NS	NS	NS
3/22/2007	NS	NS	NS	NS		NS NS	NS NS	NS	NS	NS	NS
7/18/2007	NS	NS	NS	NS		NS	IND				
Beal (1)						NA	NA	NA	NA	NA	93
8/30/1988	BQL	BQL	BQL	BQL		NA NA	NA NA	NA.	NA NA	NA	136
5/20/1993	BQL	BQL	BQL	BQL		BOL	4	NA NA	BQL	BQL	91.2
10/1/1996	BQL	BQL	BQL	BQL	 	BOL	17	BQL	NA NA	5.97	86
2/18/1998	BQL	BQL	BQL	BQL		BOL	BQL	BQL	BQL	BOL	110
6/13/2003	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA.	BQL	90
10/8/2003	BQL	BQL	BQL	BQL		BQL	3 3	NA NA	NA.	BQL	94.5
1/8/2004	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA.	BOL	77.5
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA.	BQL	73.1
7/20/2004	BQL	BQL	BQL	BQL		BOL	9.89	NA.	NA.	NA.	154
12/15/2004	BQL	BQL	BQL	BQL			BOL	NA NA	NA.	NA	85.4
3/24/2005	BQL	BQL	BQL	BQL		BQL BOL	BOL	NA NA	NA NA	NA NA	99.4
8/23/2005	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA NA	NA NA	7.49
12/1/2005	BQL	BQL	BQL	BQL		BQL	5,4	NA NA	NA NA	NA NA	63
3/8/2006	BQL	BQL	BQL	BQL			13.7	NA NA	NA NA	NA NA	218
6/20/2006	BQL	BQL	BQL	BQL		BQL	3,92	NA NA	NA NA	NA NA	229
10/12/2006	BQL	BQL	BQL	BQL		BQL	2.2	NA NA	NA NA	NA NA	333
1/5/2007	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	NA NA	158
3/22/2007	BQL	BQL	BQL	BQL	 	BQL	2.8 BQL	NA NA	NA NA	NA NA	127
7/18/2007	BQL	BQL	BQL	BQL		BQL	DQL_	I WA	147	L	

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold
2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL-Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

		Ethylbenzene	Toluenc	Total Xylenes	Total BTEX	мтве	IPE	EDB	Method 601	Lead	Chloride
Compound/Analysis	Benzene		1,000	530		200	70	4 x 10 ⁻⁴		15	250
2L Standards		29	1,000	1	Water Supply	Wells					
F. Norman (2) 8/30/1988	BQL	BQL	BQL	BQL	-	NA	NA	NA	NA NA	NA	8.6
5/20/1993	BQL	BQL	BQL	BQL	-	NA	NA	NA	NA	NA NA	49.9
10/1/1996	BQL	BQL	BQL	BQL		BQL	BQL	NA	BQL	BQL	
2/18/1998	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	43,4
6/12/2003	BQL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	BQL	2.4
	BQL	BQL	BQL	BQL	-	BQL	BQL	NA NA	NA	BQL	6,7
10/8/2003	BQL	BQL	BQL	BQL	_	BQL	BQL	NA	NA	BQL	5.82
1/8/2004	BQL	BOL	BQL	BQL		BQL	BQL	NA NA	NA.	BQL	7,56
4/7/2004		BQL	BQL	BQL	-	BQL	BQL	NA NA	NA	BQL	9,5
12/15/2004	BQL		BQL	BQL		BQL	BQL	NA	NA	NA	8,58
3/24/2005	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA	NA	10.8
8/23/2005	BQL	BQL		BQL		BQL	3.89	NA	NA	NA	135
12/1/2005	BQL	BQL	BQL	BOL		BQL	BQL	NA	NA	NA	6.2
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA	19.6
6/20/2006	BQL	BQL	BQL	BQL		BOL	BQL	NA	NA	NA	17,7
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA	309
1/5/2007	BQL	BQL	BQL	BQL		BOL	BQL	NA	NA	NA	11,4
3/22/2007	BQL	BQL	BQL BQL	BQL		BQL	BQL	NA	NA	NA	15
7/18/2007	BQL	BQL	BQL	DQL	L	. 242					
Gibson (3)		nor.	BQL	BQL	-	NA.	NA	NA	NA	NA	210
8/30/1988	BQL	BQL	BQL	BQL		NA	NA	NA	NA	NA	265
5/20/1993	BQL	BQL	BQL	BQL		BQL	BQL	NA	BQL	BQL	343
10/1/1996	BQL	BQL	BQL	BQL		BQL	BQL	BQL	NA	BQL	205
2/18/1998	BQL	BQL	BOL	BQL		BQL	BQL	BQL	BQL	BQL	230
6/13/2003	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	12	260
10/8/2003	BQL_	BQL	BOL	BQL		BOL	BQL	NA	NA.	BQL	276
1/8/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	BQL	267
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	302
7/20/2004	BQL	BQL	BQL	BQL	 	BQL	BQL	NA.	NA	NA	238
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA_	NA	235
3/24/2005	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA NA	NA .	230
8/23/2005	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA	402
12/1/2005	BQL	BOL	BQL	BQL		BQL	BQL	NA	NA	NA NA	100
3/8/2006 6/20/2006	BQL	BOL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	191
	BQL	BQL	BOL	BQL		BQL	BQL	NA	NA	NA NA	174
10/12/2006	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA NA	NA	356
1/5/2007 3/22/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	160.4
7/18/2007	BQL	BQL	BOL	BQL	-	BQL	BQL	NA	NA	NA	193

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

Compound/Analysis	Benzene	Ethylbenzene	Tolucne	Total Xylenes	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride 250
2L Standards	1	29	1,000	530		200	70	4 x 10 ⁻⁴		15	250
					Water Supply	Wells					
esnell (4)				nor nor		NA NA	NA	NA	NA I	NA	100
8/30/1988	BQL	BQL	BQL	BQL		NA NA	NA NA	NA NA	NA.	NA	265
5/20/1993	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	BQL	BQL	119
10/1/1996	BQL	BQL	BQL	BQL			BQL	BQL	NA NA	BQL	80.8
2/18/1998	BQL	BQL	BQL	BQL		BQL	BQL	BQL	2.9	BQL	88
6/13/2003	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA NA	BQL	86
10/8/2003	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA NA	BQL	74.7
1/8/2004	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA NA	BOL	70.9
4/7/2004	BQL	BQL	BQL	BQL		BOL	BQL	NA NA	NA.	BQL	90.2
7/20/2004	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA	NA	76
12/15/2004	BQL	BQL	BQL	BQL	-	BOL	BQL	NA NA	NA	NA	87.3
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA	103
8/23/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA	NA	80.8
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA	45
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA.	NA	92.9
6/20/2006	BQL	BQL	BQL	BQL			BOL	NA NA	NA NA	NA	82.5
10/12/2006	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	NA NA	119
1/5/2007	BQL	BQL	BQL	BQL	-	BQL	BQL	NA NA	NA NA	NA NA	75
3/22/2007	BQL	BQL	BQL	BQL		BQL	BQL BQL	NA NA	NA NA	NA NA	88
7/18/2007	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	I NA	I NA		
. (5)											
stcr (5) 8/30/1988	BOL	BQL	BQL	BQL		NA	NA .	NA	NA	NA	34
5/20/1993	BQL	BQL	BOL	BQL	-	NA	NA	NA	NA	NA NA	35
10/1/1996	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	BQL	BQL	493
2/17/1998	BQL.	BQL	BQL	BOL		BQL	BQL	BQL	NA	BQL	67
6/13/2003	BQL	BQL	BQL	BQL		BQL	BQL	BQL	BQL	BQL	43
10/8/2003	BQL	BQL	BOL	BQL	-	BQL	BQL	NA	NA NA	BQL	46
1/8/2004	BQL	BOL	BOL	BQL		BQL	BQL	NA	NA_	BQL	42.9
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	BQL	42.1
7/20/2004	BOL	BOL	BQL	BQL	-	BQL	BQL	NA	NA	BQL	43.4
12/15/2004	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	47.5
3/24/2005	BOL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	49.1
	BQL	BQL	BQL	BQL	-	BQL	BQL	NA	NA	NA NA	58.2
8/23/2005		BOL	BQL	BQL		BQL	BQL	NA	NA	NA NA	38.5
8/23/2005 12/1/2005	BOL					BQL	BQL	NA	NA NA	NA NA	33
12/1/2005	BQL		BOL	I BOL						1 374	44
12/1/2005 3/8/2006	BQL	BQL	BQL BOL	BQL BOL	-	BQL	BQL	NA	NA	NA	
12/1/2005 3/8/2006 6/20/2006	BQL BQL	BQL BQL	BQL	BQL		BQL BQL	BQL BQL	NA	NA	NA	47.1
12/1/2005 3/8/2006 6/20/2006 10/12/2006	BQL BQL BQL	BQL BQL BQL	BQL BQL	BQL BQL				NA NA	NA NA	NA NA	47.1 127
12/1/2005 3/8/2006 6/20/2006	BQL BQL	BQL BQL	BQL	BQL		BQL	BQL	NA	NA	NA	47.1

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold
2L Standards - Subchapter 2L Quality Standards for Class GA groundwater
NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

* Sample actually taken before treatment system

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

		T		must Wateres	Total BTEX	MTBE	IPE	EDB	Method 601	Lead	Chloride
Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	TOM DIEA	200	70	4 x 10 ⁻⁴		15	250
2L Standards	1	29	1,000	530							
					Water Supply	Wells					
J. Hancock (6) before treatment					25	NA	NA.	NA	NA	NA	3,100
8/30/1988	11	BQL	1	13	192	NA NA	NA NA	NA	NA	NA	2,224
5/20/1993	192	BQL	BQL	BQL NA	192	NA NA	NA NA	NA	NA	NA	2,741
2/29/1996	NA	NA NA	NA PO	9	77	4	23	NA	BQL	6.55	4,189
10/1/1996	68	BQL	BQL	BOL	56	BQL	15	BOL	NA	BQL	3,934
2/17/1998	56	BQL	BQL	BQL		BOL	3	BOL	BQL	BQL	2,300
6/13/2003	BQL	BQL	BQL BOL	BOL		BOL	BQL	NA	NA	BQL	780
10/8/2003	BQL	BQL	BOL	BQL		BOL	BOL	NA	NA	BQL	826
1/8/2004	BQL	BQL		BQL		BQL	BQL	NA	NA	BQL	906
4/7/2004	BQL	BQL	BQL	BOL		BQL	BOL	NA	NA	BQL	900
7/20/2004	BQL	BQL	BQL			BOL	BQL	NA	NA	NA	879
12/15/2004	BQL	BQL	BQL	BQL	<u> </u>	BQL	BOL	NA	NA	NA	912
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	1,010
8/23/2005	BQL	BQL	BQL	BQL			BQL	NA.	NA	NA	1,290
12/1/2005	BQL	BQL	BQL	BQL		BQL	BOL	NA NA	NA.	NA.	1,400
3/8/2006	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	NA	1,199
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	1,132
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	NA NA	1,152
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA NA	NA NA	926
3/22/2007	BOL	BQL	BQL	BQL		BQL	BQL	NA NA		NA NA	1,265
7/18/2007	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	NA	NA	NA NA	1,205
	<u> </u>										
J. Hancock (6) after treatment s	vstem								· · · · · ·	274	1223*
6/20/2006	BOL	BQL	BQL	BQL	BQL	BQL	BQL	NA NA	NA NA	NA	
10/12/2006	BOL	BOL	BQL	BQL	-	BQL	BQL	NA	NA NA	NA	61.3 127
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	83.8
3/22/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA_	NA	
7/18/2007	NS	NS	NS	NS	-	NS	NS	NS	NS	NS	NS

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)

Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl ether

TABLE 5: HISTORICAL WATER WELL SAMPLE RESULTS

							mr	EDB	Method 601	Lead	Chloride
Compound/Analysis	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	MTBE	IPE	4 x 10 ⁻⁴	Wellion 601	15	250
2L Standards	1	29	1,000	530		200	70	4 X 10		15	
					Water Supply	Wells					
Rhodes (ERW)				,		1.1	NA	NA	NA.	NA	79
5/26/1988	715.8	NA	108,5	276 32	1,100.62	NA	NA NA	NA NA	NA NA	NA.	190
8/30/1988	400	BQL	71	BQL	471	NA NA	NA NA	NA NA	NA NA	NA	147
5/20/1993	39	BQL	BQL	BQL	39	BQL	BQL	BQL	NA NA	BQL	171
10/1/1996	BQL	BQL	BQL	BQL			BQL	BQL	NA.	BQL	86
2/18/1998	BQL	BQL	BQL	BQL		BQL	BOL	BOL	BQL	BQL	81
6/12/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	120
10/8/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	108
1/8/2004	BQL	BQL	BQL	BQL		BQL		NA NA	NA NA	BQL	114
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	123
7/20/2004	BQL	BQL	BQL	BQL		BQL	1.57	NA NA	NA NA	NA NA	109
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	104
3/24/2005	BQL	BQL	BQL	BQL	<u> </u>	BQL	BQL	NA NA	NA NA	NA NA	125
8/23/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	103 .
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	52
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	88.3
6/20/2006	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	NA NA	84.9
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	119
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA NA	NA NA	93.6
3/22/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	NA NA	110
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	I NA	100	110
<u> </u>											
Brown (7)								701	BOL	BOL	380
6/12/2003	BQL	BQL	BQL	BQL	_	BQL	BQL	BQL	NA NA	BQL	420
10/8/2003	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	297
1/8/2004	BQL	BQL	BQL	BQL		BQL	BQL		NA NA	BQL	470
4/7/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA NA	BQL	408
7/20/2004	BQL	BQL	BQL	BQL		BQL	1,57	NA.		NA NA	330
12/15/2004	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA WA	NA NA	475
3/24/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA.	NA	NA NA	305
8/23/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA	NA NA	228
12/1/2005	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	110
3/8/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA_	NA_	NA NA	230
6/20/2006	BOL	BQL	BQL	BQL		BQL	BQL	NA_	NA NA	NA NA	220
10/12/2006	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA.		273
1/5/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	177
3/33/07	BQL	BQL	BQL	BQL		BQL	BQL	NA	NA		224
7/18/2007	BQL	BQL	BQL	BQL		BQL	BQL	NA NA	NA	NA NA	224

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2L Groundwater Quality Standards are bold

2L Standards - Subchapter 2L Quality Standards for Class GA groundwater

NA- Not analyzed for this compound

NS - Not Sampled

BQL- Below the quantitation limit of the method of analysis

SW - South Well

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl other

TABLE 6: HISTORICAL SURFACE WATER SAMPLE RESULTS

									S-1 (1	inner)									State
Compound/					7	101047	4171047	7/20/047	12/15/047	3/24/05 ⁷	8/23/057	12/01/057	3/08/067	6/20/067	10/12/067	1/3/077	3/22/077	7/18/07	Standard
Analysis	10/31/883	10/11/96°	2/18/986	6/12/03'	10/8/037	1/8/04	4/7/04								NS	BOL	BOL	NS	1,19
Benzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS					
Ethylbenzene ¹	NA	BQL	BQL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	
Toluene ¹	NA.	BOL	BOL	BQL	BQL	BOL	BOL	BOL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	11
Total Xylenes		BOL	BOL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	
Total Aylenes	NA	BUL	BQL	DQL	BQL	DQD		1 202	 										_
Total BTEX				***												707	por	NS	
MTBE ¹	NA.	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL		
DIPE ¹	NA	BOL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL	NS	
EDB ⁸	NA.	BOL	BOL	BQL	NA	NA	NA	NA	NA	NA	NS	NA	BQL	NS	NS	BQL	BQL	NS	
						NA	NA	NA	NA	NA	NS	NA	BQL	NS	NS	BQL	BQL	NS	<u> </u>
Method 6012	NA	BQL	NA NA	BQL	NA						_		BQL	NS	NS	BQL	BQL	NS	25
Lead ³	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NS	NA							
Chloride⁴	1.000	74.6	22.8	12	7.6	10.8	13.6	209	31.6	27.8	NS	33,3	35	NS	NS	37.5	23.3	NS	250

C									S-2	(mid)									State
Compound/	10/01/003	10/11/06	2/18/98 ⁶	6/12/037	10/8/037	1/8/047	4/7/047	7/20/047	12/15/047	3/24/057	8/23/057	12/01/057	3/08/067	6/20/067	10/12/067	1/3/07	3/22/077	7/18/07	Standard
Analysis	10/31/883			4, 4-1, 1-1						BOL	BOL	BOL	BQL	BOL	NS	BOL	BOL	NS	1.19
Вепzепе	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL							BQL	BQL	NS	
Ethylbenzene ¹	NA	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS				
Toluene ¹	NA	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	111
Total Xylenes	NA	BOL	BQL	BQL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	
Total BTEX													_				-		
MTBE ¹	NA.	BQL	BQL	BQL	BQL	BQL	BOL	BQL	BOL	BOL	BQL	BOL	BQL	BQL	NS	BQL	BQL	NS	
DIPE ¹	NA NA	BOL	BOL	BQL	BOL	BOL	BOL	BQL	BOL	BOL	BQL	BQL	BQL	BQL	NŠ	BQL	BQL	NS	
	NA NA	BOL	BOL	BQL	NA NA	NA.	NA.	NA.	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	
EDB ⁸						NA.	NA NA	NA	NA	NA	NA	NA	BQL	BOL	NS	BQL	BQL	NS	
Method 601 ²	NA	BQL	BQL	BQL	NA							NA.	BOL	BOL	NS	BQL	BQL	NS	25
Lead ³	NA	BQL	BQL	BQL	NA	NA	NA	NA NA	NA	NA	NA								
Chloride ⁴	840	72.2	156	27	16	39.8	41.1	15.1	64,1	49.8	79.2	248	39	26.4	NS	39.9	55.9	NS	250

Compound/									S-3 (1	ower)									State
Analysis	10/31/885	10/11/96 ⁶	2/18/986	6/12/03 ⁷	10/8/037	1/8/047	4/7/047	7/20/047	12/15/047	3/24/057	8/23/05 ⁷	12/01/057	3/08/06 ⁷	6/20/06 ⁷	10/12/06 ⁷	1/3/07 ⁷	3/22/07 ⁷	7/18/07 ⁷	Standard
Benzene ¹	NA	BQL	BOL	BOL	BQL	BOL	BOL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	1.19
Ethylbenzene ¹	NA.	BQL	BQL	BOL	BQL	BOL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
Toluene ¹	NA NA	BQL	BQL	BQL	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	11
Total Xylenes	NA.	BQL	BOL	BOL	BQL	BOL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
Total BTEX																			
MTBE ¹	NA NA	BOL	BQL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
DIPE ¹	NA NA	BOL	BQL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
EDB ⁸	NA	BOL	BQL	BOL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	
Method 601 ²	NA	BOL	NA.	BOL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	
Lead ³	NA	BOL	BOL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	25
Chloride ⁴	700	295	54.7	29	32	53.4	53.1	97.1	105	51.2	35,6	140	61	75.8	25.9	79.8	70.9	NS	250

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2B Surface Water Quality Standards are bold

2B Standards - Subchapter 2B Quality Standards for Surface Water (NCAC 15A 2B.0200)

NS- Not Sampled
NA- Not analyzed for this compound

BQL-Below the quantitation limit of the method of analysis

MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

¹EPA Method 602 with a detection limit of 1 to 2 ppb

²EPA Method 601 with a detection limit of 1 to 5 ppb

Ms. Ruth Debrito, Smithfield Foods, Inc. Hancock Country Hams, Franklinville, North Carolina

³EPA Method 239.1 with a detection limit of 5 ppb

⁴EPA Method SM4500C with a detection limit of 0.10 ppm

⁵ Sample collected by Westinghouse Environmental

⁶ Sample collected by BPA Environmental & Engineering, Inc.

⁷ Sample collected by Trigon Engineering Consultants, Inc.

⁸ EPA Method 504.1 with a detection of 0.02 ppb

TABLE 6: HISTORICAL SURFACE WATER SAMPLE RESULTS

Compound/									S-1 (apper)									State
· ·	10/31/885	10/11/96 ⁶	2/18/98 ⁶	6/12/037	10/8/037	1/8/047	4/7/047	7/20/047	12/15/047	3/24/057	8/23/057	12/01/057	3/08/067	6/20/067	10/12/067	1/3/07	3/22/07 ⁷	7/18/07 ⁷	Standard
Analysis						BOL	BOL	BOL	BOL	BOL	NS	BOL	BOL	NS	NS	BOL	BOL	NS	1.19
Benzene'	NA	BQL	BQL	BQL	BQL				1		NS	BOL	BOL	NS	NS	BOL	BOL	NS	
Ethylbenzene*	NA_	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL								NS	
Tolucne	NA	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	NS	BQL	BQL		
Total Xylenes	NA	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL_	NS	BQL	BQL	NS	NS	BQL	BQL	NS	<u> </u>
Total BTEX	- · · · ·																		
	NA.	BOL	BOL	BQL	BOL	BOL	BOL	BQL	BOL	BOL	NS	BOL	BOL	NS	NS	BQL	BQL_	NS	
MTBE			BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	NS	BOL	BOL	NS	NS	BQL	BQL	NS	
DIPE	NA	BQL			NA.	NA.	NA.	NA NA	NA	NA	NS	NA	BOL	NS	NS	BOL	BQL	NS	
EDB ⁸	NA	BQL	BQL	BQL				_	_			NA	BOL	NS	NS	BOL	BOL	NS	
Method 6012	NA_	BQL	NA	BQL	NA NA	NA	NA	NA	NA	NA.	NS								25
Lcad ³	NA	BQL	BQL	BQL	NA	NA	NA	NA	NA	NA	NS	NA	BQL	NS	NS	BQL	BQL	NS	25
Chloride⁴	1.000	74.6	22,8	12	7.6	10.8	13,6	209	31.6	27.8	NS	33.3	35	NS	NS	37.5	23.3	NS	250

Compound/									S-2	(mid)									State
Analysis	10/31/885	10/11/96	2/18/986	6/12/037	10/8/037	1/8/047	4/7/047	7/20/047	12/15/047	3/24/057	8/23/057	12/01/057	3/08/067	6/20/067	10/12/067	1/3/077	3/22/07	7/18/07	Standard
Benzene ¹	NA.	BOL	BOL	BQL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	1,19
Ethylbenzene ¹	NA.	BOL	BOL	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	
Toluene ¹	NA.	BOL	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL_	BQL	BQL	NS_	BQL	BQL	NS	Ш
Total Xylenes	NA	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL_	NS	
Total BTEX		-									-					-			
MTBE ^I	NA	BOL	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	BQL	BQL	NS	<u> </u>
DIPE	NA	BOL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	พร	BQL	BQL	NS	<u> </u>
EDB ⁸	NA	BOL	BOL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	<u> </u>
Method 601 ²	NA	BOL	BQL	BQL	NA	NΑ	NA	NA	NA	NA	NA	NA	BQL	BQL	NS_	BQL	BQL	NS	L-I
Lcad ³	NA	BOL	BQL	BQL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	NS	BQL	BQL	NS	25
Chloride ⁴	840	72,2	156	27	16	39.8	41.1	15.1	64.1	49.8	79.2	248	39	26.4	NS	39.9	55.9	NS	250

Compound/									S-3 (ower)									State
Analysis	10/31/885	10/11/96	2/18/98 ⁶	6/12/037	10/8/037	1/8/047	4/7/047	7/20/047	12/15/047	3/24/057	8/23/057	12/01/057	3/08/067	6/20/067	10/12/067	1/3/077	3/22/07	7/18/07 ⁷	Standard
Benzene ¹	NA.	BOL	BOL	BOL	BOL	BOL	BOL	BQL	BOL	BOL	BQL	BQL	BOL	BQL	BQL	BQL	BQL	NS	1.19
Ethylbenzene ^t	NA NA	BOL	BOL	BOL	BQL	BOL	BOL	BOL	BOL	BOL	BOL	BQL	BOL	BOL	BQL	BQL	BQL	NS	_
Tolucne	NA NA	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BQL	BQL	BQL	NS	11
Total Xylenes	NA.	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BOL	BQL	BQL	BQL	BQL	NS	_
	INA	BQL .	DQL	BOL	DQL	- DOD	1000												
Total BTEX											_=_				_				
MTBE ¹	NA.	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
DIPE1	NA	BOL	BQL	BOL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL	NS	
EDB ⁸	NA	BOL	BOL	BOL	NA	NA	ΝA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	
Method 6012	NA	BOL	ΝA	BOL	NA	NA	NA	NA	NA	NA	NA	NA	BQL	BQL	BQL	BQL	BQL	NS	
Lead ³	NA	BOL	BOL	BOL	NA	NA	NA	NA	NA	NA	NA	NA_	BQL	BQL_	BQL	BQL	BQL	NS	25
Chloride⁴	700	295	54.7	29	32	53.4	53.1	97.1	105	51.2	35.6	140	61	75,8	25.9	79.8	70.9	NS	250

Notes:

All results in parts per billon (ppb), except chloride which is presented in parts per million (ppm)
Concentrations which exceed the 2B Surface Water Quality Standards are bold

2B Standards - Subchapter 2B Quality Standards for Surface Water (NCAC 15A 2B.0200)

NS-Not Sampled NA-Not analyzed for this compound

BQL- Below the quantitation limit of the method of analysis
MTBE - Methyl-tert-butyl-ether

IPE - Isopropyl Ether

¹ EPA Method 602 with a detection limit of 1 to 2 ppb

²EPA Method 601 with a detection limit of 1 to 5 ppb

³ EPA Method 239.1 with a detection limit of 5 ppb

⁴EPA Method SM4500C with a detection limit of 0.10 ppm

⁵ Sample collected by Westinghouse Environmental

⁶Sample collected by BPA Environmental & Engineering, Inc.

⁷Sample collected by Trigon Engineering Consultants, Inc.

⁸ EPA Method 504.1 with a detection of 0.02 ppb

TABLE 7: SUMMARY OF MONITORING WELL AND GROUNDWATER ELEVATION DATA

	·													Static Wa	ter Levels								ļ
	Elev		l w	ell Constructi	ion	11/1	8/88 ³	2/17	19/984	3/1	3/99 ⁴	5/2:	3/994	6/12	/03 ⁶	10/	3/03 ⁶	1/8	/04 ⁶	4/7	/04 ⁶		0/046
Well		1)		(11)	Denth	Depth	0/00	Depth	12/20	Depth	1	Depth		Depth		Depth		Depth		Depth	1 1	Depth	1 /
No.	Top of	Top of	Length of	Depth				(fL)	Elevation	(fL)	Elevation	(0.)	Elevation	(fL)	Elevation	(fl.)	Elevation	(fL)	Elevation	(fL)	Elevation	(fL)	Elevation
	Casing	Screen	Screen	of Casing	of Well	(ft.)	Elevation	13.20	832.11	(15)	Elevation	14.25	831 06	14.21	828.63	14.34	828.50	14.17	828 67	14.07	828.77	14.32	828.52
MW-IS	842 84	845.31	50	NA	15	13.95	831 36	4.70	671.41			11.05	665.06			9.30	665.36	9.43	665 23	7 96	666.70	10 74	663.92
MW-ID	674.66		NA	11.0	72	13.11	663.00											_					
P-1	809.32	811.84	2,40	NA	3	3.60	808.24	4.95	760.05	- = -													_
P-2	ND	765.00	2,4	NA_	5.5	3,70	761.30		682.67									_					
P-3	682.98	684 89	2.4	NA.	2.9	2.78	682.11	2,22	712.31	147.25	695 91	>151.50	<691.66	139 20	703.36	117.99	724 57	119 08	723.48	122,22	720.34	118.11	724.45
RW-1	842.56		NΛ	23.8	220			130.85	720.58	149 62	701.36	145,50	705.48	126 25	724.22	121.88	728.59	122.75	727.72	123.47	727.00	121.79	728.68
RW-2	850,47		NA	386	401			130,40		141 25	699.72	139 55	701.42	124.14	716 51	112.86	727.79	115.78	724,87	113.32	727.33	113.04	727.61
RW-3	840.65		NA_	52,5	340			129 50	711.47	119.11	701.19	118.25	702.05	103.34	718 15	96.11	725 38	97.46	724.03	97.81	723 68	95.66	725 83
RW-4	821.49		NA_	200	301			105,20	715.10	129.10	701.19	128.35	703.63	112.26	718.81	105.87	725.20	107.55	723.52	107.22	723 85	105.78	725.29
RW-5	831 07		NA.	29,5	303			115.35	716.63		708 22	150.35	708.97	132.53	725.85	126.69	731.69	128.68	729.70	129 41	728.97	127.04	731.34
RW-6 (PLW)	858 38	-	NA_	37.7	267	137.64	721,68	137.28	722 04	151,10		145.20	712.46	130 27	726.73	124.62	732.38	126.74	730 26	127.46	729.54	125.09	731.91
RW-7	857.00	_	I NA	14.3	221	I —	J	134.70	722.96	145,45	712 21	143.20	712.40	130 27	720.73	124102	152,50						

	Γ		1			Static Water Levels																		
Well	Elevation ¹		Well Construction			01/05/056 0		03/2	03/24/05 ⁶ 08/		23/056	12/0	12/01/056		3/08/066		6/20/06 ⁶		10/12/066		1/3/076		3/22/076	
No.	Top of	Top of	Length of	Depth	Depth	Depth		Depth		Depth		Depth		Depth		Depth		Depth	{	Depth		Depth	l	
140.	Casing	Screen	Screen	of Casing ⁵	of Well	(8)	Elevation	(IL)	Elevation	(fL)	Elevation	(fL)	Elevation	(fL)	Elevation	(ft.)	Elevation	(fr)	Elevation	(fL)	Elevation	(ft.)	Elcvati	
			50	NA.	15	14.07	828.77	13.8	829 04	14.19	828 65	13,93	828.91	12.95	829.89	14.05	828:79	14.16	828 68	13.64	829.20	13 82	829.0	
MW-IS	842.84	845.31				10.027	664 64	7.39	667 27	11.39	663 27	12.15	662.51	12.33	662.33	12.35	662,31	14.52	660 14	10.28	664.38	9.02	665.6	
MW-ID	674 66		NA_	11.0	72				007 27	11:37	003 27	13.15							_					
P-1	809.32	811.84	2.40	NA	. 3																-		<u> </u>	
P-2	ND	765.00	24	NA	55	_=_																		
P-3	682,98	684.89	2.4	NA_	2.9						724.45	121 85	720.71	121.82	720 74	121.49	721.07	123,17	71939	123 65	718.91	122 61	719.9	
RW-i	842.56		NA_	238	220	121.75	720.81	118 31	724 25	118 11		127,16	723 31	124.04	726 43	126 04	724.43	128,63	721 84	127.99	722.48	125 4	725 0	
RW-2	850.47		NA.	386	401	127,24	723.23	122.99	727.48	123,92	726.55	123 01	717.64	115.14	725.51	115.52	725.13	115.6	725.05	124 6	716 05	114.97	725.6	
RW-3	840 65		NA	52.5	340	121.92	718.73	114.96	725.69	114.1	726.55		721 00	100.43	721 06	104.2	717 29	102 22	719 27	102.08	719,41	100.59	720 90	
RW-4	821.49	ı	NA	200	301	100.26	721.23	96 98	724 51	96 69	724 80	100.49		110.43	720.42	111 21	719 86	112 42	718 65	112 34	718 73	110.62	720 43	
RW-5	831.07	-	NA	29.5	303	110.45	720 62	107.1	723.97	106 89	724.18	110.64	720.43		726 69	127.04	731.34	125,65	732.73	133.33	725.05	131.52	726 8	
RW-6 (PLW)	858 38	-	NA	37.7	267	131.44	726 94	128 78	729.60	128.17	730.21	132,01	726.37	131.69		129,44	727.56	131.36	725.64	131.34	725.66	129.46	727.54	
RW-7	857.00		NA	14.1	221	129.55	727,45	126.89	730.11	126,22	730.78	130.09	726.91	129.67	727,33	129,44	121,30	131,30	122.04	1.71.54	, ,,,,,			

	Eleva	ution ¹	w	ell Constructi	Static Water Levels 7/18/07 ⁶			
Well		a)] "	(ft)				
No.	Top of	Top of	Length of	Depth	Depth	Depth		
	Casing	Screen	Screen	of Casing ⁵	of Well	(fL)	Elevation	
MW-1S	842.84	845.31	5.0	NA	15	12.21	830 63_	
MW-1D	674 66	-	NA	11.0	72	12.77	661 89	
P-I	809 32	811.84	2.40	NA	3			
P-2	ND	765.00	24	NA_	5.5			
P-3	682.98	684.89	24	NA	2.9			
RW-I	842.56	-	NA	23.8	220	121 75	720.81	
RW-2	850 47		NA	386	401	125.12	725.35	
RW-3	840 65	-	NA	52.5	340	126 67	713.98	
RW-4	821,49	-	NA	200	301	100.09	721.40	
RW-5	831.07		NA	29.5	303	110.30	720 77	
RW-6 (PLW)	858.38		NA	37.7	267	130.95	727 43	
RW-7	857,00	-	NA	14.1	221	129.25	727.75	

⁻ Depth to Groundwater Not Measured

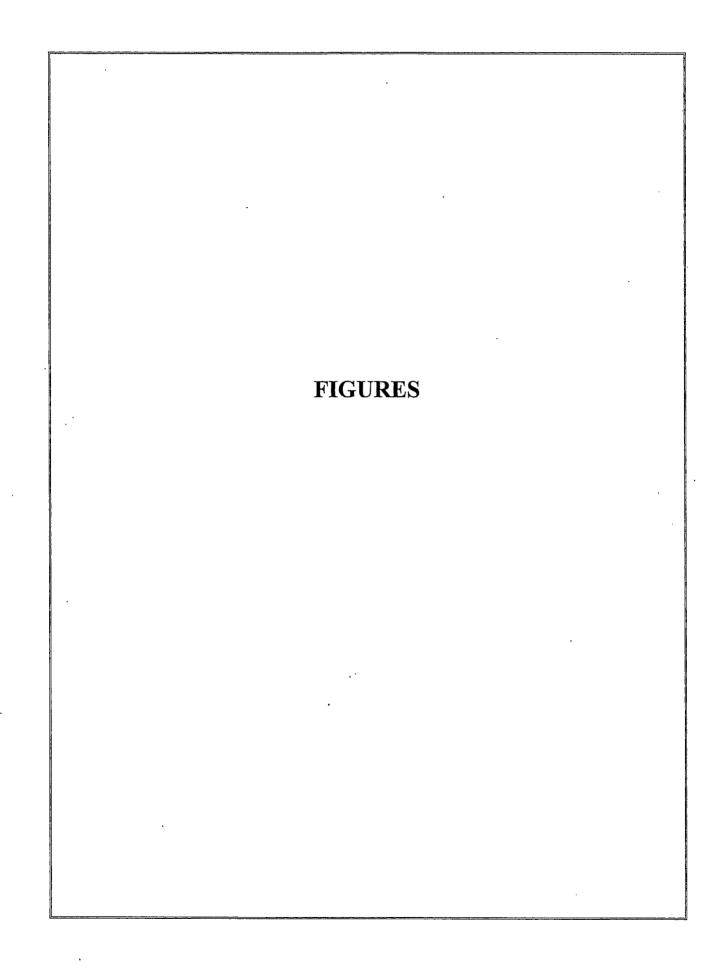
¹Elevations surveyed from USGS Benchmark by Concord Engineering & Surveying.

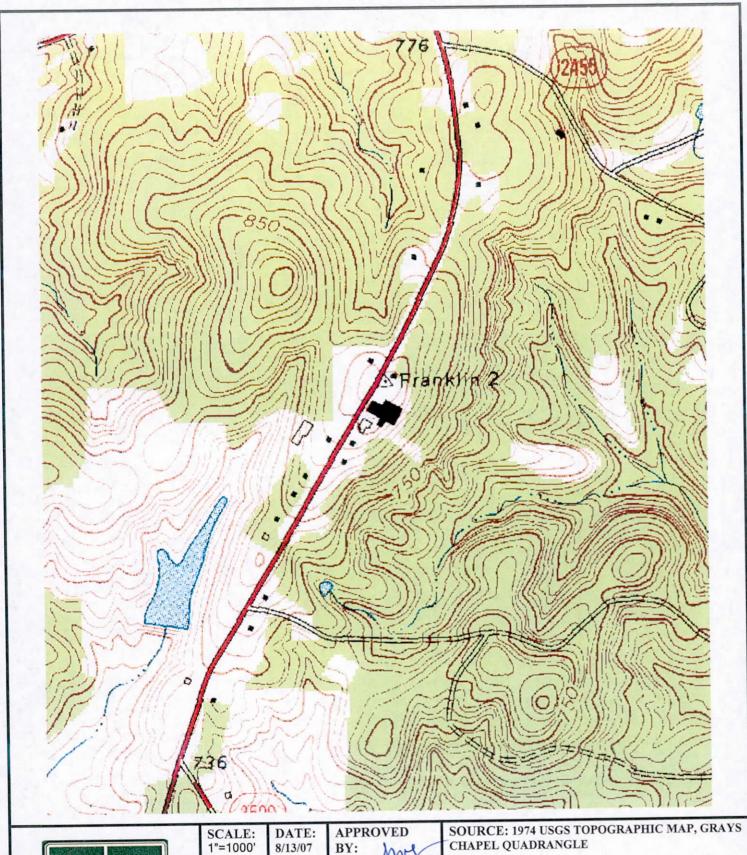
²Static water levels measured from the top of easing.

³Water levels measured by Westinghouse Environmental Services.

⁴Water levels measured by BPA Environmental & Engineering, Inc.

Bedrock Well - Open hole from this depth down. Depth of easing determined from geophysical logging.

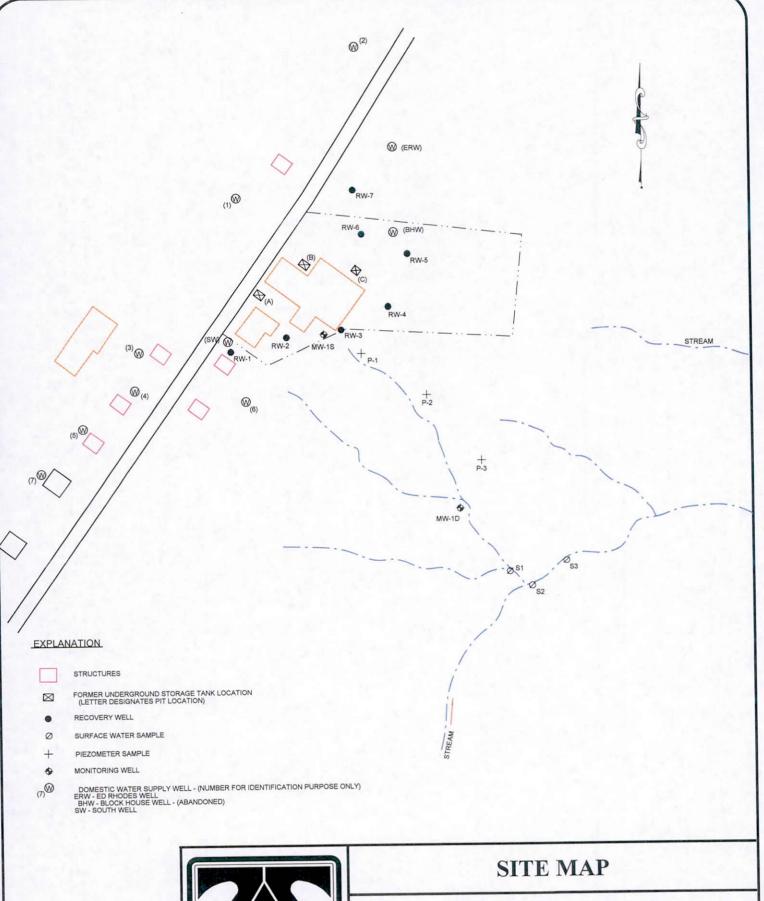

⁶Water levels measured by Trigon Engineering Consultants, Inc.


⁷MW-1D and MW-1S water level measured 12/15/04

NA - Not applicable MW - Monitoring well

P - Prezometer

RW - Recovery Well
PLW - Also referred as the Parking Lot Well


Trigon Engineering Consultants, Inc. 313 Gallimore Dairy Road Greensboro, North Carolina 27409

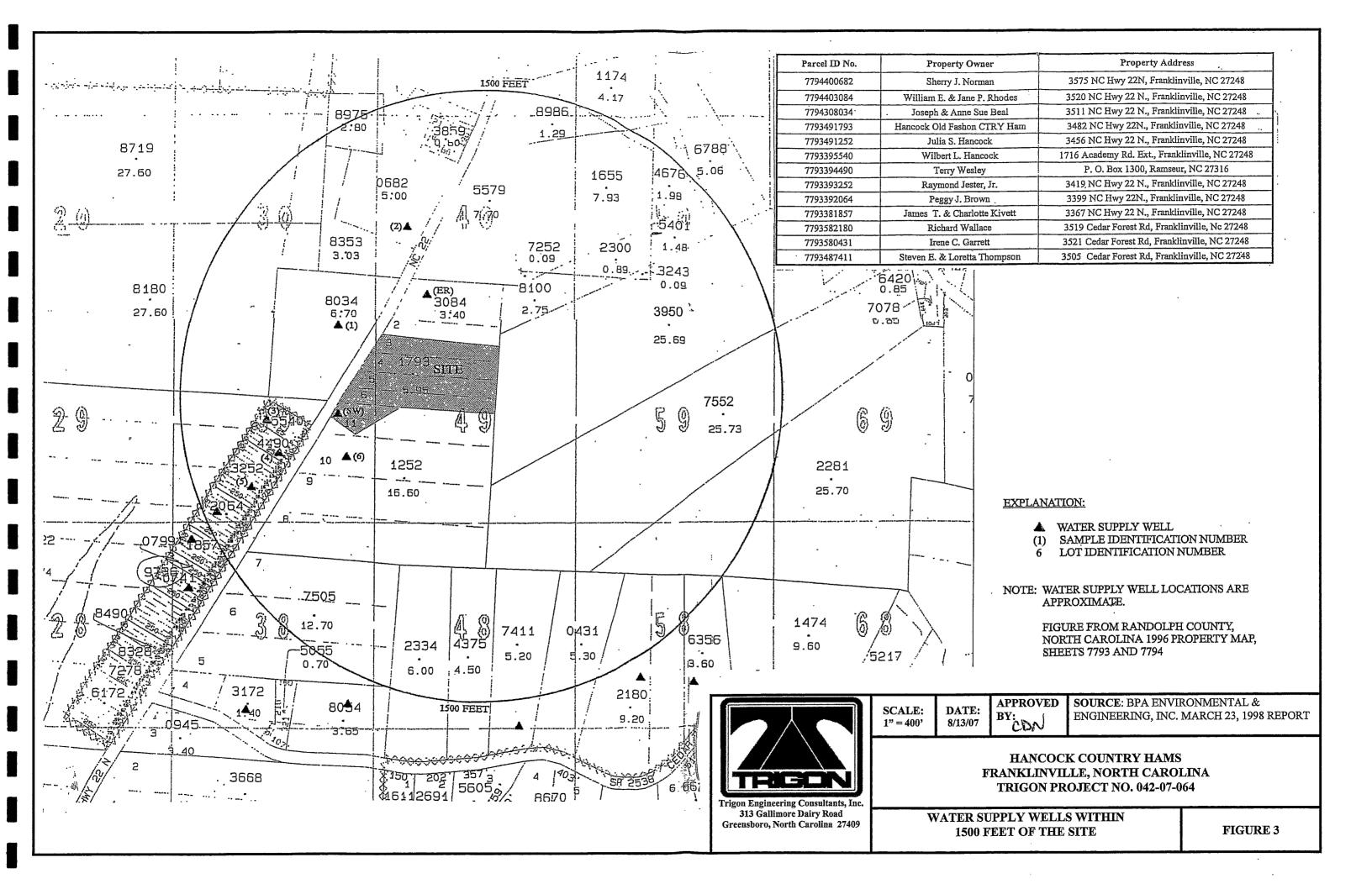
1"=1000"

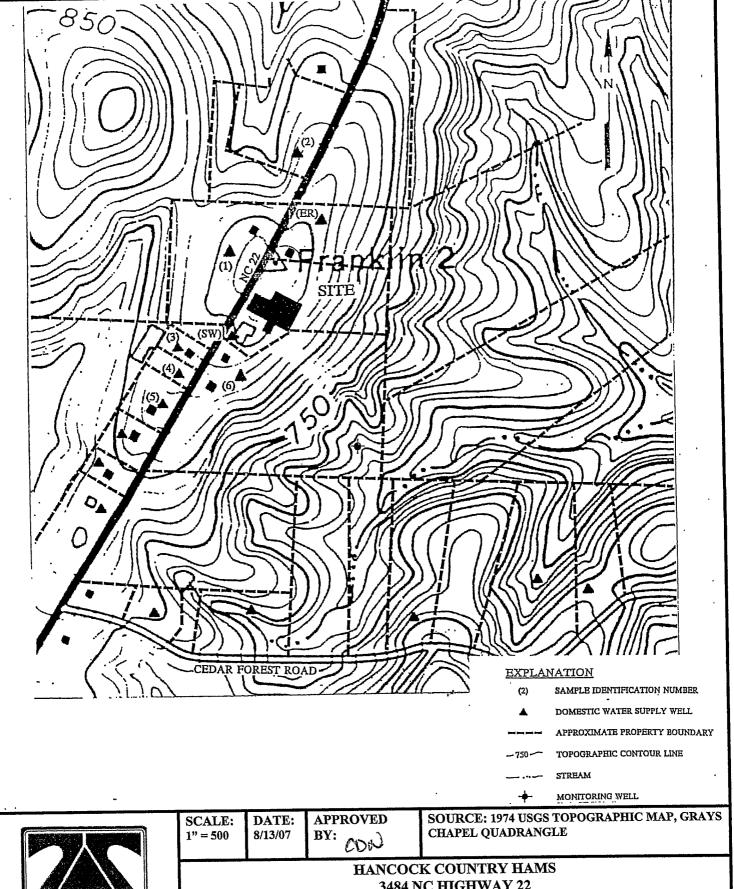
HANCOCK COUNTRY HAMS **3484 NC HIGHWAY 22** FRANKLINVILLE, NORTH CAROLINA TRIGON PROJECT NO. 042-07-064

SITE LOCATION MAP

FIGURE

CON


DRAWN BY: DRK


DATE: 8/13/07

Project No. 042-07-064

HORIZONTAL: 1" = 300'

FIGURE 2

Trigon Engineering Consultants, Inc. 313 Gallimore Dairy Road Greensboro, North Carolina 27409

3484 NC HIGHWAY 22 FRANKLINVILLE, NORTH CAROLINA TRIGON PROJECT NO. 042-07-064

Topographic Relationship of Water Well to the Site

FIGURE

FIGURE 5 CONCENTRATION OF BENZENE VERSUS TIME IN RW-3

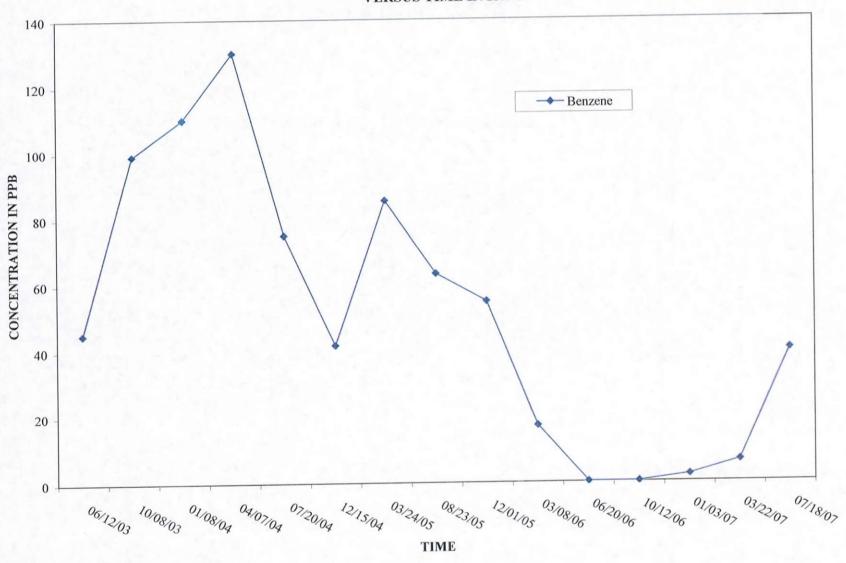
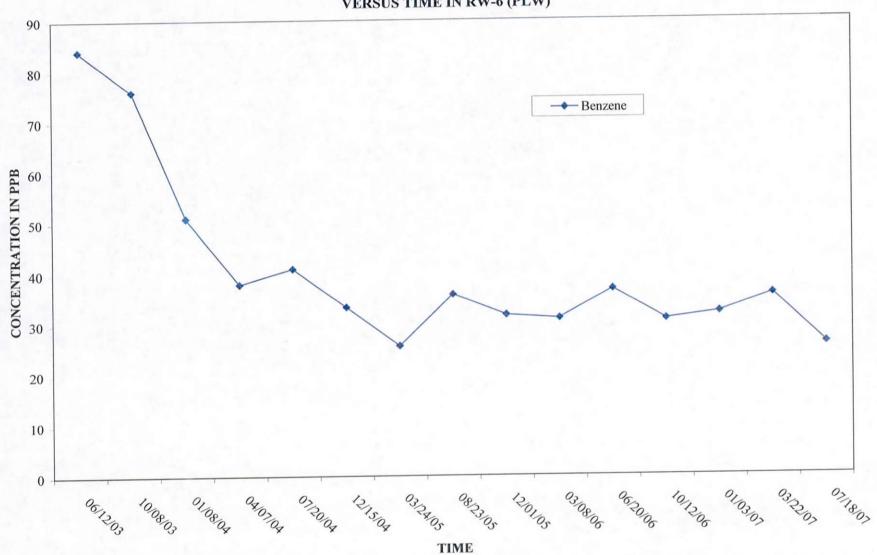



FIGURE 6
CONCENTRATION OF BENZENE
VERSUS TIME IN RW-6 (PLW)

FIGURE 7 CONCENTRATION OF BENZENE, ETHYLBENZENE, TOLUENE, AND TOTAL XYLENES VERSUS TIME IN RW-7

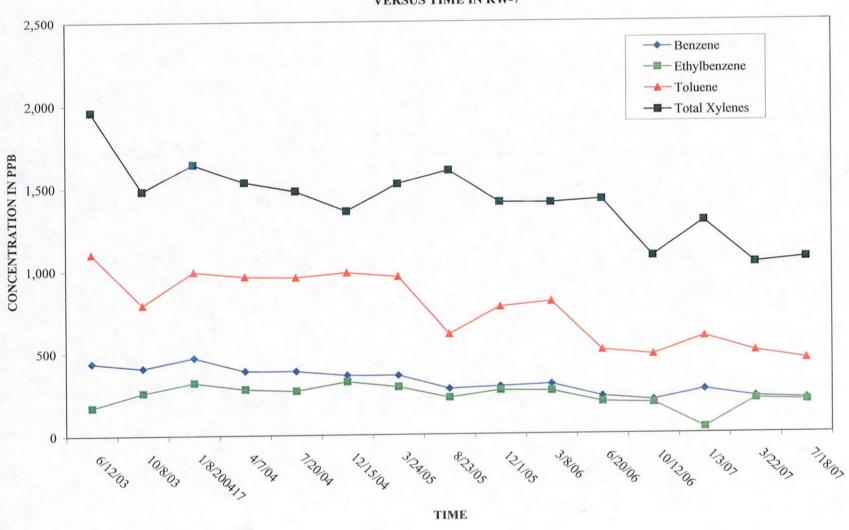


FIGURE 8
CONCENTRATION OF BENZENE
VERSUS TIME IN THE SOUTH WELL (SW)

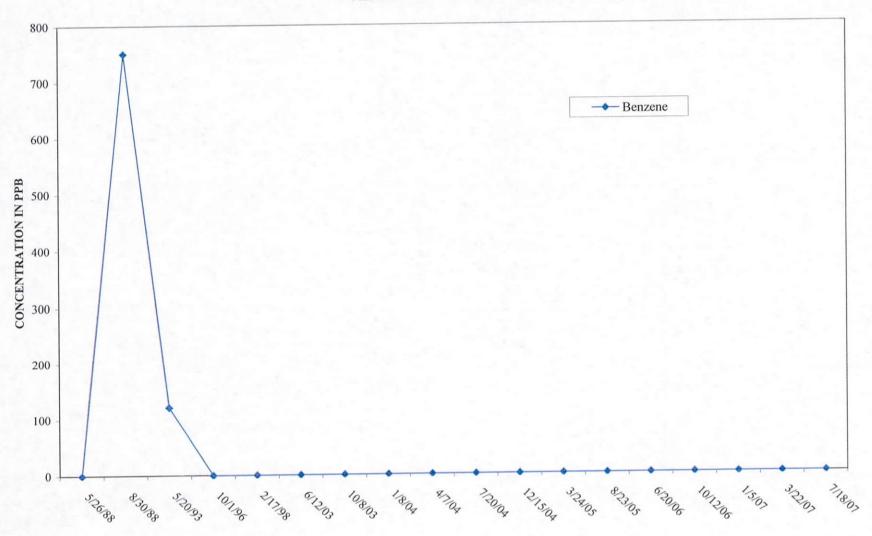


FIGURE 9
CONCENTRATION OF BENZENE
VERSUS TIME IN THE ED RHODES WELL (ERW)

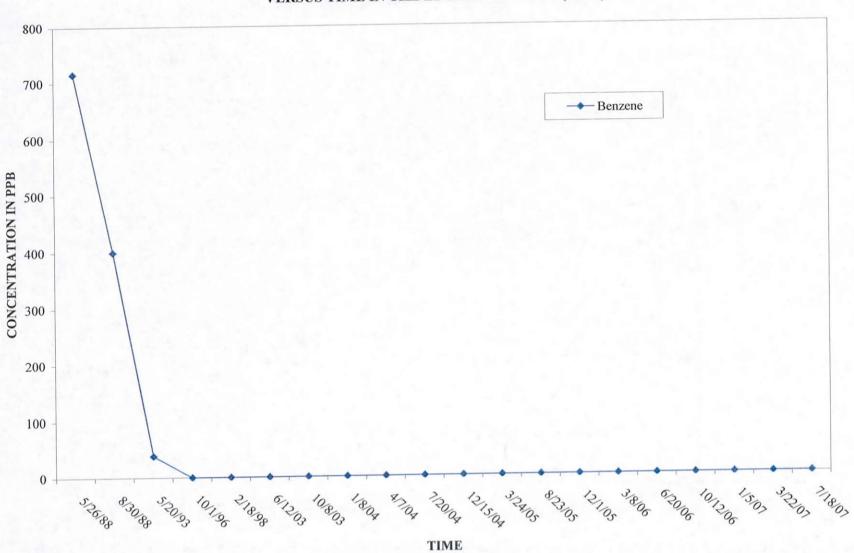
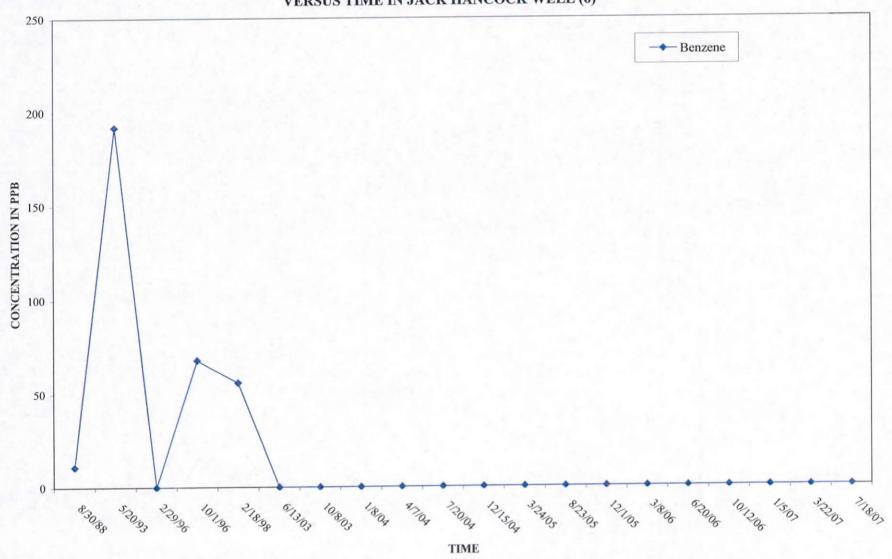
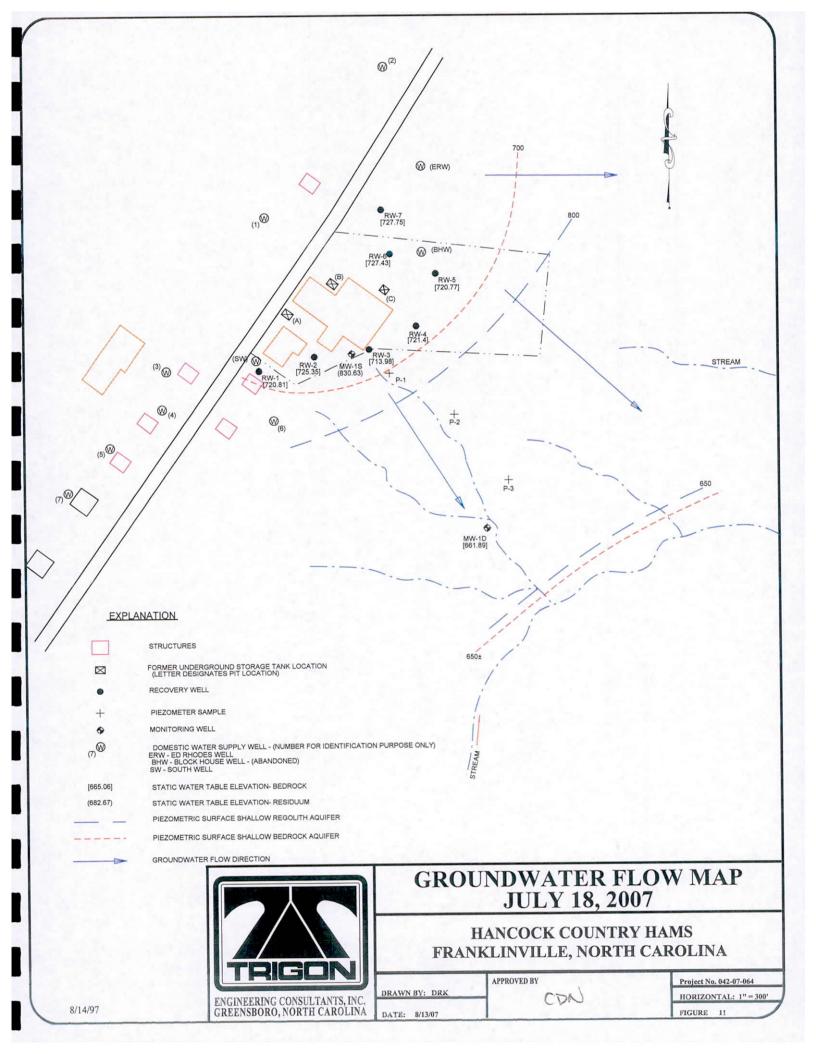
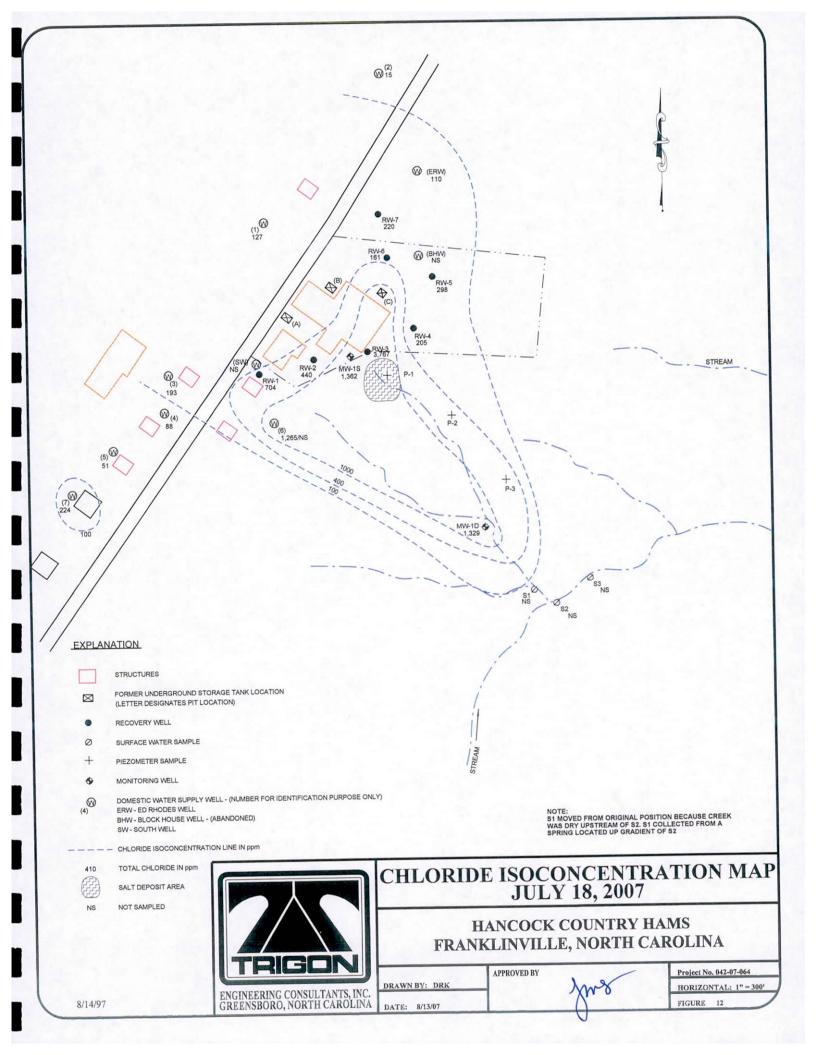
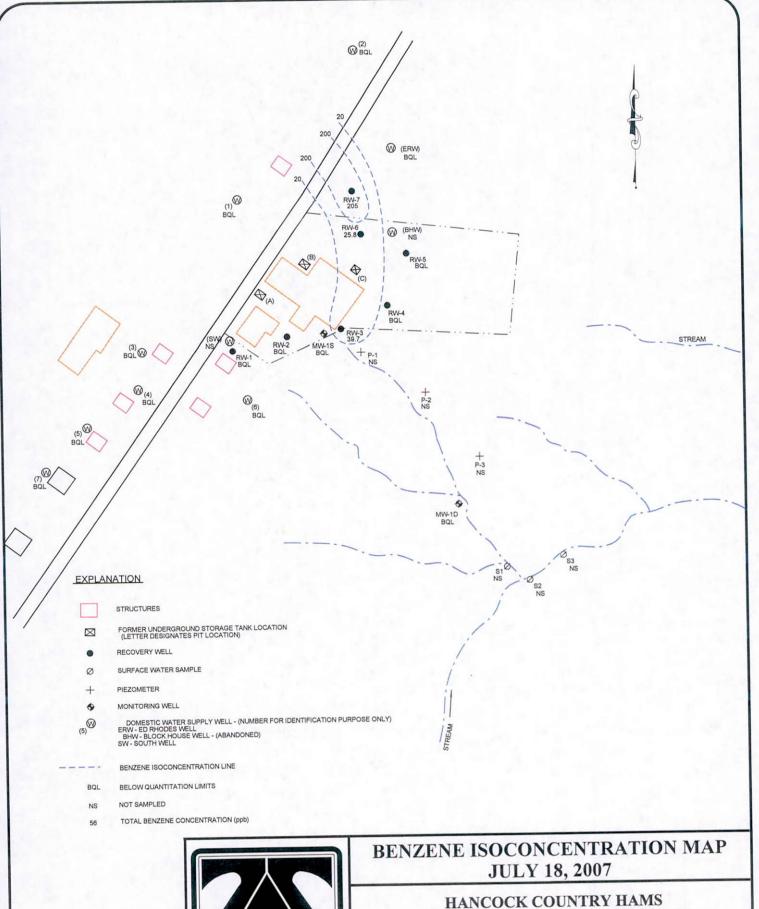
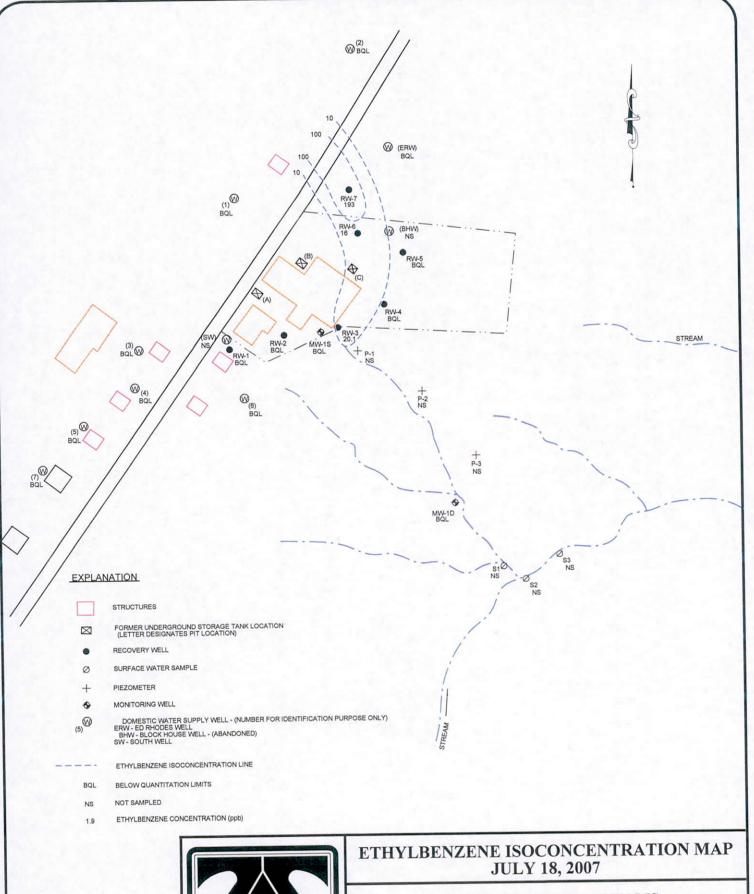






FIGURE 10 CONCENTRATION OF BENZENE VERSUS TIME IN JACK HANCOCK WELL (6)

ENGINEERING CONSULTANTS, INC. GREENSBORO, NORTH CAROLINA


FRANKLINVILLE, NORTH CAROLINA

DRAWN BY: DRK

DATE: 8/27/07

APPROVED BY

Project No. 042-07-064 HORIZONTAL: 1" = 300' FIGURE 13

DRAWN BY: DRK

Mis

Project No. 042-07-064

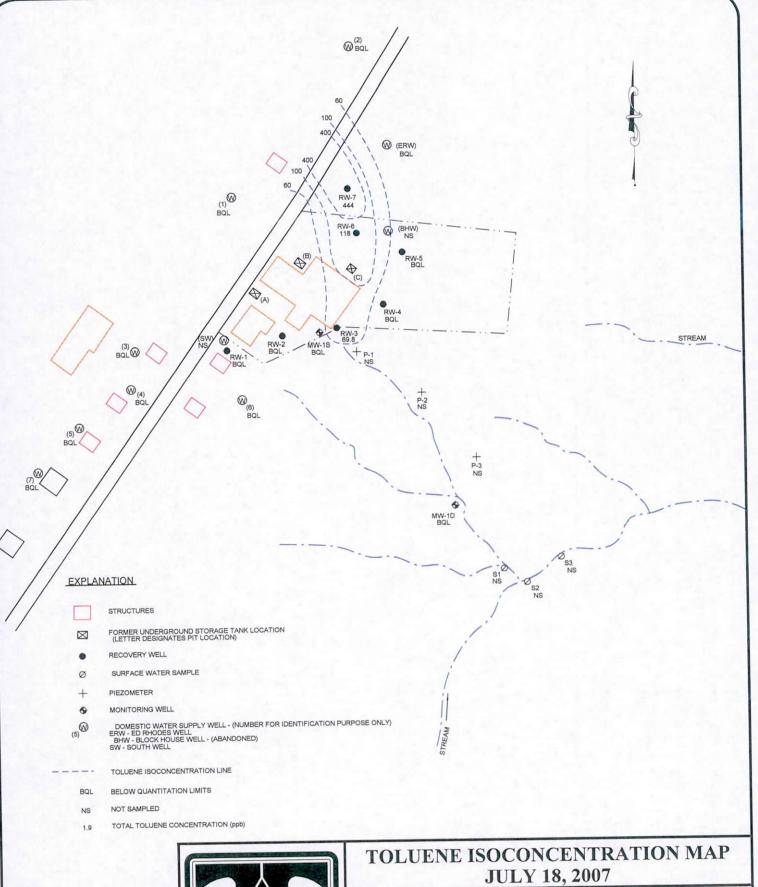

HORIZONTAL: 1" = 300'

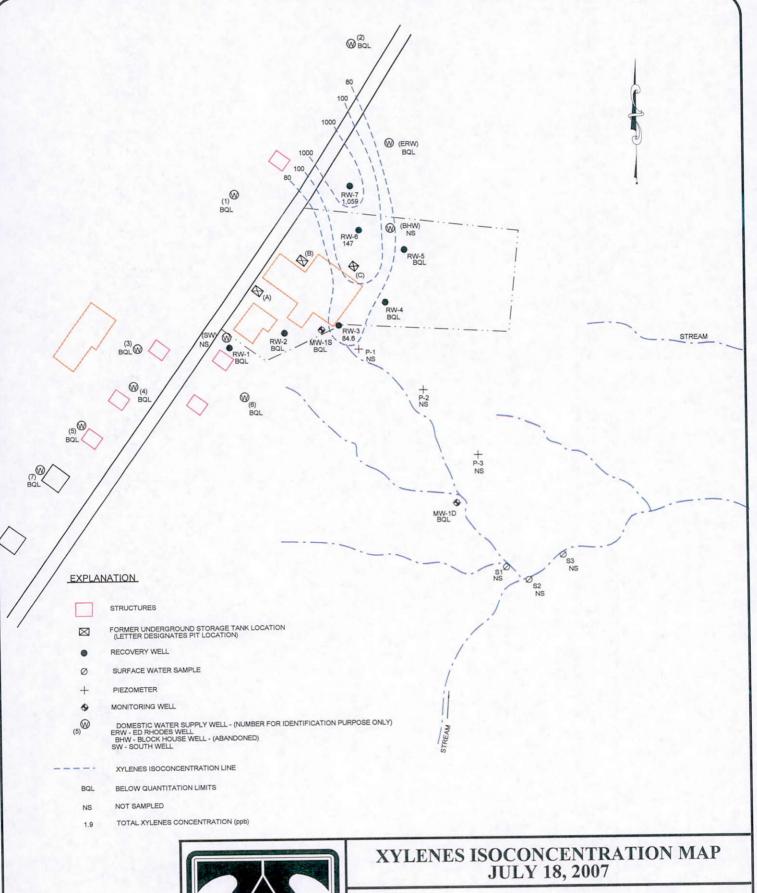
FIGURE 14

8/14/97

DRAWNBI: DR

DATE: 8/27/07

DRAWN BY: DRK


DATE: 8/27/07

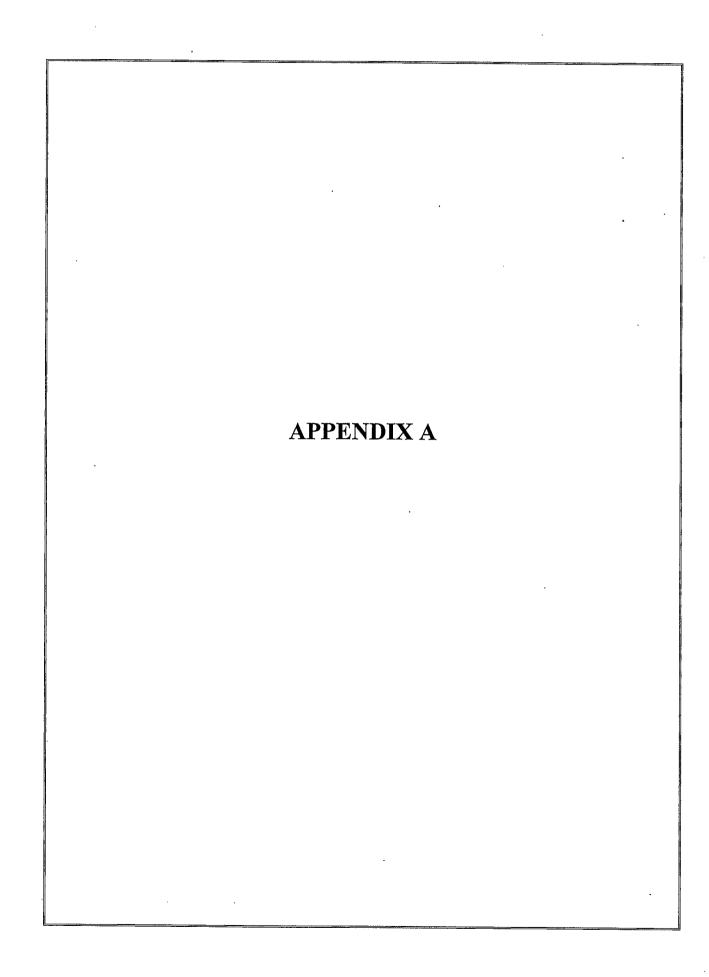
APPROVED BY

Project No. 042-07-064

HORIZONTAL: 1" = 300'

FIGURE 15

DRAWN BY: DRK


DATE: 8/27/07

APPROVED BY

Project No. 042-07-064

HORIZONTAL: 1" = 300'

FIGURE 16

North Carolina Department of Environment and Natural Resources

Michael F. Easley, Governor

William G. Ross Jr., Secretary

March 16, 2004

CERTIFIED MAIL 7002 2410 0004 4233 3012 RETURN RECEIPT REQUESTED

Norman B. Fisher Gwaltney of Smithfield, Ltd. P.O. Box 489 Smithfield, VA 23431

Re: Notice of Regulatory Requirements 15A NCAC 2L .0115(f) Risk-Based Assessment and Corrective Action for Petroleum Underground Storage Tanks, Hancock Country Hams, 3484 NC Highway 22 North, Franklinville, Randolph County, NC, Incident 3700, High Risk Classification

Dear Mr. Fisher:

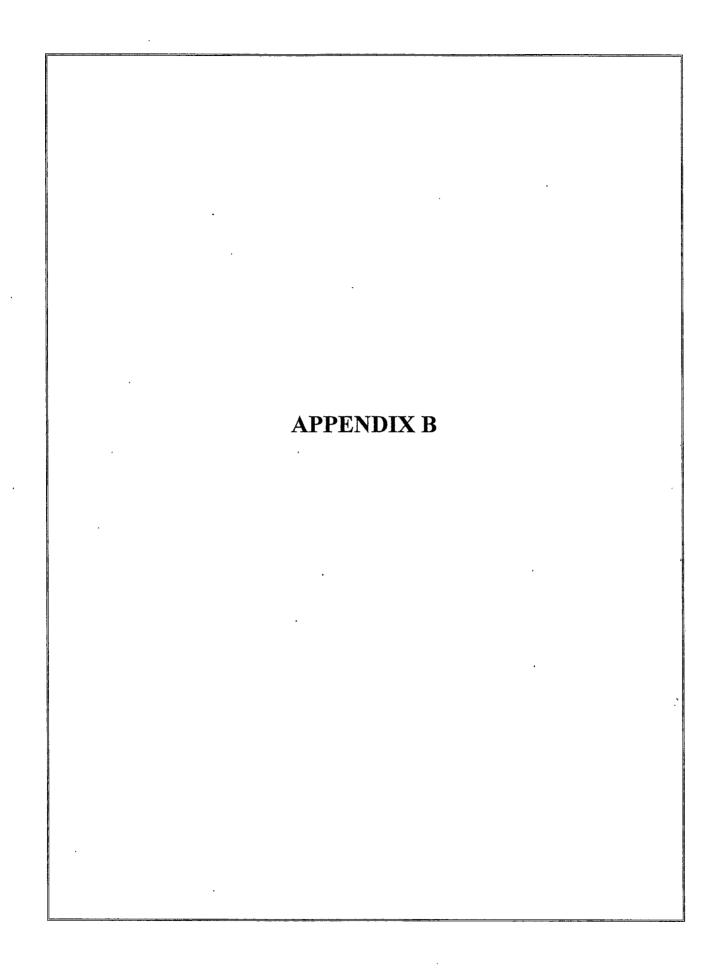
The UST Section of the Division of Waste Management, Winston-Salem Regional Office, has reviewed the Corrective Action Plan dated February 4, 2004 for the above-referenced incident. The UST Section staff agrees with the proposed plan and schedule with the following modifications:

- 1. Water supply wells 1 through 7, SW, BHW, and ERW should also be sampled on a quarterly basis. (January, April, July, and October)
- 2. The monitoring reports should be submitted to the Winston-Salem Regional Office within thirty (30) days of the last day of the monitoring period.
- 3. Any revisions to the sampling schedule will be considered following the receipt and review of the findings from this monitoring activity.

Based on the recommendation of the UST Section staff, I hereby approve the plan and schedule. You should initiate this remedial action within thirty (30) days from the date of receipt of this notice. Please note that it is your responsibility to ensure that any waste generated during implementation of the plan is disposed of in accordance with all applicable county, state and federal laws.

Your prompt attention to the items described herein is required. Failure to comply with the State's rules in the manner and time specified may result in the assessment of civil penalties

If you have any questions regarding the actions that must be taken or the rules mentioned in this notice, please contact Stephen Williams at the letterhead address and/or at (336) 771-4600 extension 283.


Sincerely.

Cindy Kintoul

Regional Supervisor

cc: Mike Walker, Randolph County Health Department WSRO files

John Stewart, Trigon Engineering Consultants

Client: Hancock Country Hams		
Project Number: 042-07-064		1
GROUNDWATER SAMPLING	G FIELD DATA	
Location: Franklinville, North Carolina	Purge Date: _	7/18/2007
Source/Well: MW-1D	Purge Time:	13:30 to 14:30
Locked: Yes No X	Sample Date:	7/18/2007
PVC Steel X Stainless Steel	Sample Time: _	14:30
Measuring point description: TOC	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to free product from measuring point	<u>1</u>	NAft.
2) Depth to water from measuring point	-	12.77 ft.
Thickness of free productDepth to well bottom from measuring point	<u>r</u>	NA ft. 72 ft.
4) Depth to well bottom from measuring point5) Height of water column (h)	-	59.23 ft.
Well Purging and Sample Collection		
1) Purge Method	<u>]</u>	BAILER
2) Sample Method	<u>]</u>	Bailer
3) Volume of water in well		
[] 1" well (v = 0.041 x h)		
2" well ($v = 0.163 \times h$)		
4" well $(v = 0.651 x h)$		
X 6" well (v = 1.5 x h)		88.85 gal.
4) Volume of water removed prior to sampling		100 gal.
	YES	NOX
5) Was well purged DRY?	1125	NOA
Field Analysis		
1) Temperature	-	°C
2) Specific Conductance	-	μmhos/cm
3) pH	-	
4) Dissolved Oxygen		
5) ORP	<u>-</u>	
6) Physical Apperance and Odor		
7) Other		

Client: Hancock Country Hams		,
Project Number: 042-07-064		
GROUNDWATER SAMPLING	FIELD DATA	
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: MW-1S	Purge Time:	13:25 to 13:35
Locked: Yes X No	Sample Date:	7/18/2007
PVC X Steel Stainless Steel	Sample Time:	14:00
Measuring point description: TOC	Sampled By:	JWM/JCL
	. ,	
Water Level and Well Data		
1) Depth to free product from measuring point	N	
2) Depth to water from measuring point		12.21 ft.
3) Thickness of free product	<u>N</u>	A ft.
4) Depth to well bottom from measuring point	_	13 ft. 0.79 ft.
5) Height of water column (h)		0.79 11.
Well Purging and Sample Collection		
1) Purge Method	В	AILER
2) Sample Method	B	ailer
3) Volume of water in well		
1" well $(v = 0.041 x h)$		
\overline{X} 2" well (v = 0.163 x h)		
$\overline{}$ 4" well (v = 0.651 x h)		
6" well ($v = 1.5 \times h$)		
		0.13 gal.
4) Volume of water removed prior to sampling	<u>_</u> -	<u>1</u> gal.
5) Was well purged DRY?	YES	NOX
Field Analysis		
1) Temperature	_	°C
2) Specific Conductance	_	μmhos/cm
3) pH	_	
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor	_	
7) Other		

Client: Hancock Country Hams	
Project Number: 042-07-064	
GROUNDWATER SAMPLING	FIELD DATA
Location: Franklinville, North Carolina	Purge Date: 7/18/2007
Source/Well: RW-1	Purge Time: 9:30 to 14:00
Locked: Yes X No	Sample Date: 7/18/2007
PVC X Steel Stainless Steel	Sample Time: 14:45
Measuring point description: TOC	Sampled By:JWM/JCL
Water Level and Well Data	
1) Depth to free product from measuring point	<u>NA</u> ft.
2) Depth to water from measuring point	<u>121.75</u> ft.
3) Thickness of free product	<u>NA</u> ft.
4) Depth to well bottom from measuring point5) Height of water column (h)	<u>220</u> ft. 98.25 ft.
3) Height of water column (ii)	
Well Purging and Sample Collection	
1) Purge Method	SYSTEM
2) Sample Method	SYSTEM
3) Volume of water in well	
2" well $(v = 0.163 x h)$ 4" well $(v = 0.651 x h)$	
$X = \{x \in \{x \in \{0.051\} \} \}$	
A 0 wen(v - 1.3 k n)	147.38 gal.
4) Volume of water removed prior to sampling	1200_gal.
5) Was well purged DRY?	YES NO X
,	
Field Analysis	
1) Temperature	°C
2) Specific Conductance	μmhos/cn
3) pH	
4) Dissolved Oxygen	
5) ORP	
6) Physical Apperance and Odor	
7) Other	

Client: Hancock Country Hams		
Project Number: 042-07-064		
GROUNDWATER SAMPLING I	FIELD DATA	
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: RW-2	Purge Time:	9:30 to 14:00
Locked: Yes X No	Sample Date:	7/18/2007
PVC X Steel Stainless Steel	Sample Time: _	14:40
Measuring point description: TOC	Sampled By: _	JWM/JCL_
Water Level and Well Data		
1) Depth to free product from measuring point	<u>1</u>	NAft.
2) Depth to water from measuring point	,	125.12 ft.
3) Thickness of free product	<u>r</u>	NA ft. 401 ft.
Depth to well bottom from measuring pointHeight of water column (h)	_ _	275.88 ft.
Well Purging and Sample Collection		
	9	SYSTEM
 Purge Method Sample Method 	-	SYSTEM
3) Volume of water in well		
1" well ($v = 0.041 x h$)		
2" well ($v = 0.163 \times h$)		
	•	
X 6" well ($v = 1.5 x h$)		412.921
4) Volume of water removed prior to sampling		413.82 gal. 597 gal.
• •	- 	
5) Was well purged DRY?	YES	NOX
Field Analysis		
1) Temperature	-	°C
2) Specific Conductance	-	μmhos/cm
3) pH		
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor		
7) Other		

Client: Hancock Country Hams		
Project Number: <u>042-07-064</u>		<u></u>
GROUNDWATER SAMPLIN	IG FIELD DATA	
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: RW-3	Purge Time:	9:30 to 14:00
Locked: Yes X No	Sample Date:	7/18/2007
PVC X Steel Stainless Steel	Sample Time: _	14:35
Measuring point description: TOC	Sampled By: _	JWM/JCL
Water Level and Well Data		
1) Depth to free product from measuring point	<u>1</u>	IA ft.
2) Depth to water from measuring point	-	126.67 ft.
3) Thickness of free product	<u>1</u>	<u>IA</u> ft. 340 ft.
4) Depth to well bottom from measuring point5) Height of water column (h)		213.33 ft.
and the second s	_	-
Well Purging and Sample Collection		
1) Purge Method	-	SYSTEM
2) Sample Method	<u>.</u>	SYSTEM
3) Volume of water in well		
1" well ($v = 0.041 x h$) 2" well ($v = 0.163 x h$)		
$2^{n} \text{ well } \dots (v = 0.103 \text{ k H})$ $4^{n} \text{ well } \dots (v = 0.651 \text{ k h})$		
X 6" well (v = 0.051 k h)		
ZZ O WOILLING		320.00 gal.
4) Volume of water removed prior to sampling	_	<u>870</u> gal.
5) Was well purged DRY?	YES	NOX
Field Analysis		
1) Temperature	-	°C
2) Specific Conductance	-	μmhos/cm
3) pH	-	
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor		
7) Other		

Client: Hancock Country Hams	
Project Number: 042-07-064	
GROUNDWATER SAMPLING	
Location: Franklinville, North Carolina	Purge Date: 7/18/2007
Source/Well: RW-4	Purge Time: 9:30 to 14:00
Locked: Yes No X	Sample Date:7/18/2007
PVC X Steel Stainless Steel	Sample Time: 14:55
Measuring point description: TOC	Sampled By: JWM/JCL
Water Level and Well Data	
1) Depth to free product from measuring point	<u>NA</u> ft.
2) Depth to water from measuring point	100.09 ft.
Thickness of free product Death to well better from messuring point	<u>NA</u> ft. 301 ft.
Depth to well bottom from measuring pointHeight of water column (h)	200.91 ft.
Well Purging and Sample Collection	
	SYSTEM
 Purge Method Sample Method 	SYSTEM
3) Volume of water in well	
1" well $(v = 0.041 \text{ x h})$	
2" well ($v = 0.163 \times h$)	
4" well (v = 0.651 x h)	
X 6" well (v = 1.5 x h)	001.05
4) XV.1	301.37 gal. 125 <u>0</u> gal.
4) Volume of water removed prior to sampling	
5) Was well purged DRY?	YES NO X
Field Analysis	
1) Temperature	°C
2) Specific Conductance	μmhos/cm
3) pH	
4) Dissolved Oxygen	
5) ORP	
6) Physical Apperance and Odor	
7) Other	

Project Number: 042-07-064	
•	IC DUELD DATE
GROUNDWATER SAMPLING Leastions Examplification North Carolina	NG FIELD DATA Purge Date: 7/18/2007
Location: Franklinville, North Carolina	Purge Time: 9:30 to 14:00
Source/Well: RW-5	-
Locked: Yes No X	Sample Date: 7/18/2007
PVC X Steel Stainless Steel	Sample Time: 15:00
Measuring point description: TOC	Sampled By:JWM/JCL
Water Level and Well Data	
1) Depth to free product from measuring point	<u>NA</u> ft.
2) Depth to water from measuring point	110.3 ft.
Thickness of free product	<u>NA</u> ft. 303 ft.
Depth to well bottom from measuring pointHeight of water column (h)	192.7 ft.
110ight of water column (ii)	
Well Purging and Sample Collection	
1) Purge Method	SYSTEM
2) Sample Method3) Volume of water in well	SYSTEM
·	
1" well ($v = 0.041 \text{ x h}$)	
2" well $(v = 0.163 x h)$ 4" well $(v = 0.651 x h)$	
X = 0.051 k H	
A Woll(V 1.5 All)	289.05 gal.
4) Volume of water removed prior to sampling	1200_gal.
5) Was well purged DRY?	YES NO X
Field Analysis	
1) Temperature	°C
2) Specific Conductance	μmhos/cm
3) pH	
4) Dissolved Oxygen	
5) ORP	
6) Physical Apperance and Odor	
7) Other	

Project Number: 042-07-064	
GROUNDWATER SAMPLI	NG FIELD DATA
GROUNDWATER SAMPLI Location: Franklinville, North Carolina Source/Well: RW-6 (PLW) Locked: Yes X No PVC X Steel Stainless Steel Measuring point description: TOC Water Level and Well Data 1) Depth to free product from measuring point 2) Depth to water from measuring point 3) Thickness of free product 4) Depth to well bottom from measuring point	Purge Date: 7/18/2007 Purge Time: 9:30 to 14:00 Sample Date: 7/18/2007 Sample Time: 14:15 Sampled By: JWM/JCL NA ft. 130.95 ft. NA ft. 267 ft.
5) Height of water column (h) Well Purging and Sample Collection	136.05 ft.
1) Purge Method 2) Sample Method 3) Volume of water in well 1" well (v = 0.041 x h) 2" well (v = 0.163 x h) 4" well (v = 0.651 x h) X 6" well (v = 1.5 x h) 4) Volume of water removed prior to sampling 5) Was well purged DRY?	SYSTEM SYSTEM 204.08 gal. 500 gal. YES NOX
Field Analysis 1) Temperature 2) Specific Conductance 3) pH 4) Dissolved Oxygen	°C μmhos/cm
5) ORP6) Physical Apperance and Odor7) Other	

Project Number: 042-07-064		
GROUNDWATER SAMPLIN	NG FIELD DATA	
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: RW-7	Purge Time:	9:30 to 14:00
Locked: Yes X No	Sample Date:	7/18/2007
PVC X Steel Stainless Steel	Sample Time:	14:20
Measuring point description: TOC	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to free product from measuring point	7	IA ft.
2) Depth to water from measuring point		129.25 ft.
3) Thickness of free product	<u>ī</u>	IA ft.
4) Depth to well bottom from measuring point	_	221 ft. 91.75 ft.
5) Height of water column (h)	_	91.75 It.
Well Purging and Sample Collection		
1) Purge Method		YSTEM
2) Sample Method	<u>. S</u>	SYSTEM
3) Volume of water in well		
2" well ($v = 0.163 \text{ x h}$)		
$X = 0.651 \times h$ $X = 0.651 \times h$ $X = 0.651 \times h$		
$X = 0$ well $(V - 1.3 \times 11)$		137.63 gal.
4) Volume of water removed prior to sampling		500 gal.
5) Was well purged DRY?	YES	NOX
y was well purged DRT:	110[_]	110[21]
Field Analysis		
1) Temperature	-	°C
2) Specific Conductance	_	μmhos/cm
3) pH	<u>-</u>	
4) Dissolved Oxygen	_	
5) ORP	_	
6) Physical Apperance and Odor		
7) Other		

Client: Hancock Hams		
Project Number: 042-07-064		
WATER WELL SAMPLING FIELD DAT	<u>A</u>	
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: Beal (1)	Purge Time:	<u>16:05</u> to <u>16:10</u>
Locked: Yes No X	Sample Date:	7/18/2007
PVC Steel X Stainless Steel	Sample Time:	16:10
Measuring point description: NA	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to water from measuring point		NA ft.
2) Depth to well bottom from measuring point		NA ft.
3) Height of water column (h)4) Diameter of well		6 ft.
Well Purging and Sample Collection		
1) Purge Method		Outside spigot
2) Sample Method		Outside spigot
3) Purge Time		0:05
4) Was well purged DRY?	YES	NO X
5) Does water supply have a treatment system?	YES 2	NO
6) What type of treatment system?		RO
7) Was sample collected prior to treatment system?	YES 🗵	NO
Field Analysis		
1) Temperature		°C
2) Specific Conductance		μmhos/cm
3) pH		
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor Clear		
7) Comments		

Project Number: 042-07-064		
Froject Number. 042-07-004		
WATER WELL SAMPLING FIELD DATA		
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: Norman (2)	Purge Time:	15:55 to16:00
Locked: Yes No X	Sample Date:	7/18/2007
PVC Steel X Stainless Steel	Sample Time:	16:00
Measuring point description: NA	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to water from measuring point		NAft.
2) Depth to well bottom from measuring point		NA ft.
3) Height of water column (h)4) Diameter of well		NA ft. 6 ft.
4) Diameter of well		
Well Purging and Sample Collection		
1) Purge Method		Outside spigot
2) Sample Method		Outside spigot
3) Purge Time		0:05
4) Was well purged DRY?	YES	NO X
5) Does water supply have a treatment system?	YES	X NO
6) What type of treatment system?		RO
7) Was sample collected prior to treatment system?	YES	X NO
Field Analysis		
1) Temperature		°C
2) Specific Conductance		μmhos/cm
3) pH		
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor Clear		
7) Comments		

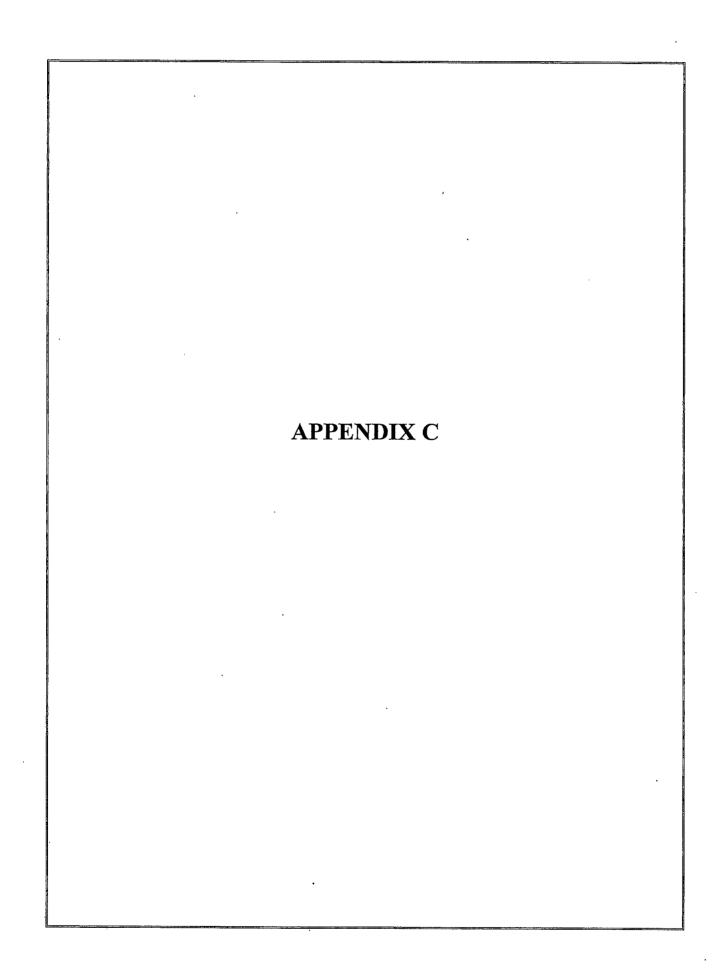
Client: Hancock Hams					
Project Number: <u>042-07-064</u>					
WATER WELL SAMPLING FIELD DATA					
Location: Franklinville, North Carolina	Purge Date:		7/1	8/2007	7
Source/Well: Gibson (3)	Purge Time:		16:15	to	16:20
Locked: Yes X No	Sample Date	:	7/1	8/200′	7
PVC Steel X Stainless Steel	Sample Time	e:	1	6:20	
Measuring point description: NA	Sampled By		JW	M/JC	<u> </u>
Water Level and Well Data					
Depth to water from measuring point			NA	ft.	
2) Depth to well bottom from measuring point			NA	ft.	
3) Height of water column (h)			NA 6	ft	
4) Diameter of well			<u> </u>	—- ^{1t}	•
Well Purging and Sample Collection					
1) Purge Method		<u>O</u>	utside	spigo	<u> </u>
2) Sample Method		<u>O</u>	utside	spigo	t
3) Purge Time			0:05	<u> </u>	
4) Was well purged DRY?	YES		NO	X	
5) Does water supply have a treatment system?	YES	X	NO		
6) What type of treatment system?		F	RO		
7) Was sample collected prior to treatment system?	YES	X	NO		
Field Analysis					
1) Temperature		_			°C
2) Specific Conductance		_		μml	nos/cm
3) pH		_			
4) Dissolved Oxygen					
5) ORP			••••		
6) Physical Apperance and Odor Clear					
7) Comments					

Client: Hancock Hams Project Number: 042-07-064				
110Jeet Namber. 042-07-004				
WATER WELL SAMPLING FIELD DATA				
Location: Franklinville, North Carolina	Purge Date:	7/:	18/2007	
Source/Well: Presnell (4)	Purge Time:	16:25	to <u>16:30</u>	
Locked: Yes X No	Sample Date:	. 7/	18/2007	
PVC Steel X Stainless Steel	Sample Time	:	16:30	
Measuring point description: NA	Sampled By:	JV	JWM/JCL	
Water Level and Well Data				
1) Depth to water from measuring point		NA		
2) Depth to well bottom from measuring point		NA		
3) Height of water column (h)4) Diameter of well		<u>NA</u> 6	ft.	
The Diameter of World				
Well Purging and Sample Collection				
1) Purge Method		Outside	e spigot	
2) Sample Method		Outside	spigot	
3) Purge Time		0:0:	5	
4) Was well purged DRY?	YES [NO	X	
5) Does water supply have a treatment system?	YES [X NO		
6) What type of treatment system?		RO		
7) Was sample collected prior to treatment system?	YES [X NO		
<u>Field Analysis</u>				
1) Temperature			°C	
2) Specific Conductance			μmhos/cm	
3) pH				
4) Dissolved Oxygen				
5) ORP				
6) Physical Apperance and Odor Clear		·- <u>-</u>		
7) Comments				

Project Number: 042-07-064				
WATER WELL SAMPLING FIELD DATA				
Location: Franklinville, North Carolina	Purge Date:	7/	18/200	07
Source/Well: Jester (5)	Purge Time:	16:3	0_to _	16:35
Locked: Yes X No	Sample Date	e: <u>7/</u>	18/20	07
PVC Steel X Stainless Steel	Sample Tim	e:	16:35	
Measuring point description: NA NA	Sampled By	: <u> </u>	VM/JO	CL
Water Level and Well Data				
1) Depth to water from measuring point		NA		ìt.
2) Depth to well bottom from measuring point		NA		ì.
Height of water column (h)Diameter of well		$\frac{NA}{6}$		ît. ît.
4) Diameter of Well		<u></u>		
Well Purging and Sample Collection				
1) Purge Method		Outsid	e spige	ot
2) Sample Method		Outsid	e spig	ot
3) Purge Time		0:0	5	
4) Was well purged DRY?	YES	□ NO	X	
5) Does water supply have a treatment system?	YES	X NO		
6) What type of treatment system?		RO		
7) Was sample collected prior to treatment system?	YES	X NO		
Field Analysis				
1) Temperature				°C_
2) Specific Conductance			μn	nhos/cm
3) pH				
4) Dissolved Oxygen				
5) ORP				
6) Physical Apperance and Odor Clear				
7) Comments				

Project Number: 042-07-064		
WATER WELL SAMPLING FIELD DATA Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: Hancock A (6)	Purge Time:	16:45 to 16:50
Locked: Yes X No	Sample Date:	7/18/2007
PVC Steel X Stainless Steel	Sample Time:	16:50
Measuring point description: NA	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to water from measuring point		<u>NA</u> ft.
2) Depth to well bottom from measuring point		NA ft.
3) Height of water column (h)4) Diameter of well		NA ft. 6 ft.
4) Diamotol of work	•	
Well Purging and Sample Collection		
1) Purge Method		Outside spigot
2) Sample Method		Outside spigot
3) Purge Time		0:05
4) Was well purged DRY?	YES	NO X
5) Does water supply have a treatment system?	YES X	NO
6) What type of treatment system?	Carb	on and RO
7) Was sample collected prior to treatment system?	YES X	ио 🗌
Field Analysis		
1) Temperature		°C
2) Specific Conductance		μmhos/cm
3) pH		
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor Clear		
7) Comments		

Client: Hancock Hams		
Project Number: 042-07-064		
WATER WELL SAMPLING FIELD DATA		
Location: Franklinville, North Carolina	Purge Date:	7/18/2007
Source/Well: Brown (7)	Purge Time:	<u>16:35</u> to <u>16:40</u>
Locked: Yes X No	Sample Date:	7/18/2007
PVC Steel X Stainless Steel	Sample Time:	16:40
Measuring point description: NA	Sampled By:	JWM/JCL
Water Level and Well Data		
1) Depth to water from measuring point		NAft.
2) Depth to well bottom from measuring point		NA ft.
3) Height of water column (h)4) Diameter of well		6 ft.
ly Diamour of Non		
Well Purging and Sample Collection		
1) Purge Method		Outside spigot
2) Sample Method		Outside spigot
3) Purge Time		0:05
4) Was well purged DRY?	YES [NO X
5) Does water supply have a treatment system?	YES 2	NO
6) What type of treatment system?		RO
7) Was sample collected prior to treatment system?	YES 🖸	NO
Field Analysis		
1) Temperature		°C
2) Specific Conductance		μmhos/cm
3) pH		
4) Dissolved Oxygen		
5) ORP		
6) Physical Apperance and Odor Clear		
7) Comments		



Project Number: 042-07-064			
WATER WELL SAMPLING FIELD DATA			
Location: Franklinville, North Carolina	Purge Date:	7/18/	2007
Source/Well: Brown (7)	Purge Time:	<u>16:35</u> to	16:40
Locked: Yes X No	Sample Date:	7/18/	2007
PVC Steel X Stainless Steel	Sample Time:	16	:40
Measuring point description: NA	Sampled By:	JWM	I/JCL
Water Level and Well Data			
1) Depth to water from measuring point		NA	ft.
2) Depth to well bottom from measuring point		NA NA	ft. ft.
3) Height of water column (h)4) Diameter of well		6	ft.
Well Develop and Samula Collection			
Well Purging and Sample Collection		0.411	
1) Purge Method		Outside s	
2) Sample Method		Outside sp	oigot
3) Purge Time	_	0:05	
4) Was well purged DRY?	YES	_ NO [<u>x</u>
5) Does water supply have a treatment system?	YES	X NO [
6) What type of treatment system?		RO	
7) Was sample collected prior to treatment system?	YES [X NO [
Field Analysis			
1) Temperature			°C
2) Specific Conductance			μmhos/cm
3) pH			
4) Dissolved Oxygen			
5) ORP			
6) Physical Apperance and Odor Clear			
7) Comments			

TRIGON ENGINEERING CONSULTANTS, INC.

Client: Hancock Hams Project Number: 042-07-064			
WATER WELL SAMPLING FIELD DATA			
Location: Franklinville, North Carolina	Purge Date:	7/18/20	07
Source/Well: Rhodes	Purge Time:	14:15_to	14:20
Locked: Yes X No	Sample Date:	7/18/20	007
PVC Steel X Stainless Steel	Sample Time:	14:2	0
Measuring point description: NA	Sampled By:	JWM/J	CL
Water Level and Well Data			
1) Depth to water from measuring point		NA	ft.
2) Depth to well bottom from measuring point			ft.
3) Height of water column (h)			ft.
4) Diameter of well		6	ft.
Well Purging and Sample Collection			
1) Purge Method		Outside spig	got
2) Sample Method		Outside spig	got
3) Purge Time		0:05	
4) Was well purged DRY?	YES [NO X	
5) Does water supply have a treatment system?	YES X	NO	
6) What type of treatment system?		RO	
7) Was sample collected prior to treatment system?	YES X	NO _]
Field Analysis			
1) Temperature			°C
2) Specific Conductance		μι	nhos/cm
3) pH			
4) Dissolved Oxygen			
5) ORP			
6) Physical Apperance and Odor Clear			-
7) Comments			

Ms. Erin Greene Trigon Engineering PO Box 18846 Greensboro NC 27419

Report Number: G118-489

Client Project: Hancock Hams

Dear Ms. Greene:

Enclosed are the results of the analytical services performed under the referenced project. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or the services performed during this project, please call SGS/Paradigm at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS/Paradigm Analytical Labs for your analytical services. We look forward to working with you again on any additional analytical needs which you may have.

8/6/2007

Sincerely,

SISParadigm Analytical Laboratories, Inc.

ratory Director

J. Patrick Weaver

List of Reporting Abbreviations and Data Qualifiers

B = Compound also detected in batch blank

BQL = Below Quantitation Limit (RL or MDL)

DF = Dilution Factor

Dup = Duplicate

D = Detected, but RPD is > 40% between results in dual column method.

E = Estimated concentration, exceeds calibration range.

J = Estimated concentration, below calibration range and above MDL

LCS(D) = Laboratory Control Spike (Duplicate)

MDL = Method Detection Limit

MS(D) = Matrix Spike (Duplicate)

PQL = Practical Quantitation Limit

RL = Reporting Limit

RPD = Relative Percent Difference

mg/kg = milligram per kilogram, ppm, parts per million

ug/kg = micrograms per kilogram, ppb, parts per billion

mg/L = milligram per liter, ppm, parts per million

ug/L = micrograms per liter, ppb, parts per billion

% Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- 1) Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

by GC 602

Client Sample ID: MW-1S

Client Project ID: Hancock Hams Lab Sample ID: G118-489-1A Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 0:00 Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/24/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/24/2007
Ethylbenzene	BQL	1.00	1	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/24/2007
Toluene	BQL	1.00	1	7/24/2007
m/p-Xylene	BQL	2.00	1	7/24/2007
o-Xylene	BQL	2.00	1	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.3	103

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: A Solution of 38

by GC 602

Client Sample ID: MW-1D

Client Project ID: Hancock Hams Lab Sample ID: G118-489-2A

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 14:30

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/24/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/24/2007
Ethylbenzene	BQL	1.00	1	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/24/2007
Toluene	BQL	1.00	1	7/24/2007
m/p-Xylene	BQL	2.00	1	7/24/2007
o-Xylene	BQL	2.00	1	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.8	105

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

by GC 602

Client Sample ID: RW-1

Client Project ID: Hancock Hams Lab Sample ID: G118-489-3A Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 14:45

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/24/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/24/2007
Ethylbenzene	BQL	1.00	1	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/24/2007
Toluene	BQL	1.00	1	7/24/2007
m/p-Xylene	BQL	2.00	1	7/24/2007
o-Xylene	BQL	2.00	1	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.9	105

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: GCVOA_WA of 38

by GC 602

Client Sample ID: RW-2

Client Project ID: Hancock Hams Lab Sample ID: G118-489-4A Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 14:40

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.9	105

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: MA GC VOA_WA 6 of 38

by GC 602

Client Sample ID: RW-3

Client Project ID: Hancock Hams Lab Sample ID: G118-489-5A

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 14:35

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	39.7	4.00	4	7/24/2007
Dilsopropyl ether (DIPE)	4.05	4.00	4	7/24/2007
Ethylbenzene	20.1	4.00	4	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	8.00	4	7/24/2007
•	69.8	4.00	4	7/24/2007
Toluene	66.6	8.00	4	7/24/2007
m/p-Xylene o-Xylene	18.0	8.00	4	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	43.8	110

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: GC-VOA_WA 7 of 38

by GC 602

Client Sample ID: RW-4

Client Project ID: Hancock Hams

Lab Project ID: G118-489

Lab Sample ID: G118-489-6A

Analyzed By: RSB

Date Collected: 7/18/2007 14:55

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/24/2007
Diisopropyl ether (DIPE)	1.04	1.00	1	7/24/2007
Ethylbenzene	BQL	1.00	1	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/24/2007
Toluene	BQL	1.00	1	7/24/2007
m/p-Xylene	BQL	2.00	1	7/24/2007
o-Xylene	BQL	2.00	1	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.7	104

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By:

by GC 602

Client Sample ID: RW-5

Client Project ID: Hancock Hams Lab Sample ID: G118-489-7A Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 15:00

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/24/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/24/2007
Ethylbenzene	BQL	1.00	1	7/24/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/24/2007
Toluene	BQL	1.00	1	7/24/2007
m/p-Xylene	BQL	2.00	1	7/24/2007
o-Xylene	BQL	2.00	1	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.7	104

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: AND GOVOA_WA Of 38

by GC 602

Client Sample ID: RW-6(PLW)
Client Project ID: Hancock Hams
Lab Sample ID: G118-489-8A
Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 14:15

Date Received: 7/20/2007

Matrix: Water

Analyte	Result	RL	Dilution	Date
	ug/L	ug/L	Factor	Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	25.8	5.00	5	7/24/2007
	BQL	5.00	5	7/24/2007
	16.0	5.00	5	7/24/2007
	BQL	10.0	5	7/24/2007
	118	5.00	5	7/24/2007
	77.6	10.0	5	7/24/2007
	69.4	10.0	5	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	42.8	107

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: GC-VOA_WA 10 of 38

by GC 602

Client Sample ID: RW-7

Client Project ID: Hancock Hams Lab Sample ID: G118-489-9A Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 14:20

Date Received: 7/20/2007

Matrix: Water

Analyte	Result	RL	Dilution	Date
	ug/L	ug/L	Factor	Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	205	20.0	20	7/24/2007
	116	20.0	20	7/24/2007
	193	20.0	20	7/24/2007
	BQL	40.0	20	7/24/2007
	444	20.0	20	7/24/2007
	471	40.0	20	7/24/2007
	588	40.0	20	7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	42.3	106

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

by GC 602

Client Sample ID: ERW

Client Project ID: Hancock Hams Lab Sample ID: G118-489-10A Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 14:25

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007 7/24/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	41.8	105

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: Reviewed By: Reviewed By: 12 of 38

by GC 602

Client Sample ID: NORMAN

Client Project ID: Hancock Hams

Lab Sample ID: G118-489-11B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:00

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/26/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/26/2007
Ethylbenzene	BQL	1.00	1	7/26/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/26/2007
Toluene	BQL	1.00	1	7/26/2007
m/p-Xylene	BQL	2.00	1	7/26/2007
o-Xylene	BQL	2.00	1	7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.4	98.6

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By:

by GC 602

Client Sample ID: BEAL

Client Project ID: Hancock Hams Lab Sample ID: G118-489-12B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:10

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	40.1	100

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

by GC 602

Client Sample ID: GIBSON

Client Project ID: Hancock Hams

Lab Sample ID: G118-489-13B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:20

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.7	99.2

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: \(\bigcup_{\text{GC-VOA_WA}} \) 15 of 38

by GC 602

Client Sample ID: PRESRELL

Client Project ID: Hancock Hams Lab Sample ID: G118-489-14B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:30

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00	1	7/26/2007
Diisopropyl ether (DIPE)	BQL	1.00	1	7/26/2007
Ethylbenzene	BQL	1.00	1	7/26/2007
Methyl-tert butyl ether (MTBE)	BQL	2.00	1	7/26/2007
Toluene	BQL.	1.00	1	7/26/2007
m/p-Xylene	BQL	2.00	1	7/26/2007
o-Xylene	BQL	2.00	1	7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.8	99.6

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

by GC 602

Client Sample ID: JESTER

Client Project ID: Hancock Hams Lab Sample ID: G118-489-15B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:35

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.6	99.1

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: GC VOA_WA 17 of 38

by GC 602

Client Sample ID: BROWN

Client Project ID: Hancock Hams

Lab Sample ID: G118-489-16B

Lab Project ID: G118-489

Analyzed By: RSB

Date Collected: 7/18/2007 16:40

Date Received: 7/20/2007

Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene Diisopropyl ether (DIPE) Ethylbenzene Methyl-tert butyl ether (MTBE) Toluene m/p-Xylene o-Xylene	BQL BQL BQL BQL BQL BQL BQL	1.00 1.00 1.00 2.00 1.00 2.00 2.00	1 1 1 1 1 1	7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007 7/26/2007
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.7	99.2

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: \(\frac{\lambda}{\sqrt{QC-VOA_WA}} \)
18 of 38

by GC 602

Client Sample ID: HANCOCK

Client Project ID: Hancock Hams

Lab Sample ID: G118-489-17B Lab Project ID: G118-489 Analyzed By: RSB

Date Collected: 7/18/2007 16:50

Date Received: 7/20/2007

. Matrix: Water

Analyte	Result ug/L	RL ug/L	Dilution Factor	Date Analyzed
Benzene	BQL	1.00 1.00	1 1	7/26/2007 7/26/2007
Diisopropyl ether (DIPE) Ethylbenzene	BQL BQL	1.00	1	7/26/2007
Methyl-tert butyl ether (MTBE) Toluene	BQL BQL	2.00 1.00	1 · 1	7/26/2007 7/26/2007
m/p-Xylene	BQL	2.00	1	7/26/2007 7/26/2007
o-Xylene	BQL	2.00	ı	112012001
Surrogate Spike Recoveries		Spike Added	Spike Result	Percent Recovery
Trifluorotoluene		40	39.9	99.8

Comments:

All values corrected for dilution. BQL = Below quantitation limit.

Reviewed By: MA 19 of 38

Client Sample ID: MW-1S

Client Project ID: Hancock Hams Lab Sample ID: G118-489-1

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	1362	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Samples reported on dry weight basis.

Reviewed By:

Client Sample ID: MW-1D

Client Project ID: Hancock Hams Lab Sample ID: G118-489-2 Lab Project ID: G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007 Water Matrix:

Method Date Analyst RL Units Result **Analyte** Analyzed Envirochem 7/26/2007 SM 4500CI-B 1329 0.1 mg/L Chloride

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: Washbout.xls 21 of 38

Client Sample ID: RW-1

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-3

G118-489 Lab Project ID:

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	704	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Client Sample ID: RW-2

Hancock Hams Client Project ID: G118-489-4 Lab Sample ID: G118-489 Lab Project ID:

Date Collected: 7/18/2007 Date Received: 7/20/2007 Water Matrix:

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	440	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: Masubout.xls 23 of 38

Client Sample ID: RW-3

Hancock Hams Client Project ID: G118-489-5 Lab Sample ID: Lab Project ID: G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007 Water Matrix:

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	3767	0.1	mg/L	SM 4500Cl-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: \(\frac{\lambda}{\subout.xis} \)
24 of 38

Client Sample ID: RW-4

Client Project ID: Hancock Hams
Lab Sample ID: G118-489-6
Lab Project ID: G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007 Matrix: Water

Analyte Result RL Units Method Date Analyst Analyzed

Chloride 205 0.1 mg/L SM 4500CI-B 7/26/2007 Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: W

subout xls 25 of 38

Client Sample ID:

RW-5

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-7

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method ·	Date Analyzed	Analyst
Chloride	298	0.1	mg/L	SM 4500Cl-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: WA subout.xls 26 of 38

RW-6(PLW) Client Sample ID: Client Project ID: Hancock Hams Lab Sample ID: G118-489-8

Lab Project ID:

G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007 Water Matrix:

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	161	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: subout.xis 27 of 38

Client Sample ID: RW-7

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-9

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	220	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: \(\sum_{\text{subout.xls}} \) 28 of 38

Client Sample ID:

ERW

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-10

Lab Project ID:

G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	110	0.1	ma/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Client Sample ID: NORMAN
Client Project ID: Hancock Hams
Lab Sample ID: G118-489-11
Lab Project ID: G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007 Matrix: Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	15	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor RL = Report Limit

Reviewed By: \(\int \text{Subout.xis} \)

Client Sample ID: BEAL

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-12

Lab Project ID:

G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	127	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: Wasubout.xls

Client Sample ID: GIBSON

Client Project ID: Hancock Hams Lab Sample ID: G118-489-13

Lab Project ID:

G118-489

Date Collected: 7/18/2007 Date Received: 7/20/2007

Matrix: Water

Analyte Result RL Units Method Date Analyst Analyzed

Chloride 193 0.1 mg/L SM 4500Cl-B 7/26/2007 Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By:

SGS

Analytical Results

Client Sample ID: PRESRELL

Client Project ID: Hancock Hams

Lab Sample ID:

G118-489-14

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	88	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: \(\frac{1}{\sqrt{\text{ubout,xls}}} \)

Client Sample ID:

JESTER

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-15

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	51	0.1	mg/L	SM 4500Cl-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: Walbout.xls

Client Sample ID:

BROWN

Client Project ID:

Hancock Hams

Lab Sample ID:

G118-489-16

Lab Project ID:

G118-489

Date Collected: 7/18/2007

Date Received: 7/20/2007

Matrix:

Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	224	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: W

subout.xls 35 of 38

Client Sample ID: HANCOCK Client Project ID: Hancock Hams Lab Sample ID: G118-489-17

G118-489 Lab Project ID:

Date Collected: 7/18/2007 Date Received: 7/20/2007 Matrix: Water

Analyte	Result	RL	Units	Method	Date Analyzed	Analyst
Chloride	1265	0.1	mg/L	SM 4500CI-B	7/26/2007	Envirochem

Comments

BQL = Below Quantitation Limits

DF = Dilution Factor

RL = Report Limit

Reviewed By: Manager Subout.xls 36 of 38

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

AlaskaOhio

HawaiiMaryland

North Carolina

Ohio
 New Jersey

West Virginia

www.us.sgs.com

`				
CLIENT: Trigon Engineering CONTACT: Erin Greene PHOME	-	10.002	SGS Refe	erence: G 18-489 PAGE_1_OF
PROJECT: Hancock Hams SITE/PW	'SID#:	8 70093	No sai	SAMPLE Used TYPE
REPORTS TO: E-MAIL:	an uda B	Andrew Can	С	Analysis / / / / / / Required / / / / / / / / / / / / / / / / / / /
REPORTS TO:	egrence	trigoneng.com	N C	C= COMP
Erin Greene FAXNO.	()		т	3/ / / / / / / /
INVOICE TO: QUOTE	#		A G	G= GRAB
Erin Greene FAX NO. INVOICE TO: QUOTE Erin Greene P.O. NUI	MBER		N	
2)			E R	
LAB NO. SAMPLĘ IDENTIFICATION	DATE	TIME MATRIX	S	REMARKS
MW-15	7/18	l W	4 1	6 - ^
MW - 10	7/18	14:30 W	4 1	6 1
RW-I	7/18	14:45 2	4 0	4 (1
RW-à	7/18	14:40 W	 	4 //
	1118			
RW-3	71.9	14:35 W	 	4 //
RW-4	7/18	14:55 W	 	9 /
RW-5	7/18	15:00 W		G C
RW-6 (PLW)	7/19	14:15 W	4 6	6 //
RU-7	714	14:20 W	4 6	6 //
ERW	7/18	14:25 W	1	acri
5)	Time	Received By:	_	Time Shipping Carrier: Samples Received Cold? (Circle YES) NO
Collected Relinquished By:(1) Date Page Date	11:30	A I	119 11.	1:36 Shipping Ticket No: Temperature JC: 4.0 r
Relinquished By: (2) Date	Time	Received By:	1/	Filme Special Deliverable Requirements: Chain of Custody Seal: (Circle)
 		I felather	7/2400	■ ·
Followished Pro (2)	Time	Received By:		Time Special Instructions:
Relinquished By: (3) Date	inne '	Pricelived by.	Date	openial mandonoria.
				Standard VAT
Relinquished By: (4) Date	Time	Received By:	Date Tir	Time Requested Turnaround Time:
				☐ RUSH ☐ STD

CHAIN OF CUSTODY RECORD SGS Environmental Services Inc.

Locations Nationwide

- Alaska
- Hawaii
- Ohio
- Maryland
 North Caroline
- New JerseyWest Virginia

nia www.us.sgs.com

																			Ĺ	ĭ)
CLIENT: Tri	ion Engineer	ing				SGS	Reference	e:								PA	AGE	2	OF O	
CONTACT:	rin brieve	PHONE I	NO:1336)61	68 00 2	3			Preservation	ves		J	T^{-}		-		\perp		T		
PROJECT:	noock Hams	SITE/PW	SID#:			No	SAMPLE TYPE	<u> </u>	ves &C) Mrs		-)	-}-						Щ	
REPORTS TO:		E-MAIL:	egreene ex	rigaring.	con	С О	C= COMP	Analysis Required	/	/	/	/	/	/		/		/		
Erin	forme	FAX NO.:				N T	COMP	(3)/	/	/ • /	/ /	/ /	/ /	/ ,	/ /	/	/ /	/		
INVOICE TO:		QUOTE#				Á	G≕ GRAB			The state of the s					/	/	/ /			
EMA	Greene	P.O. NUN	MBER			N		/ \												
LAB NO.	SAMPLE IDENTIFIC	CATION	DATE	TIME	MATRIX	E R S			b A			_/						REN	MARKS	
	Norman		7/18	16:00	W	4	6		/	/	<u>/</u>		<u></u>							
	Beal		HIA	16:10	W	4	4	7	/										····	
	Gibson		7/14	16:20	W	4	6	/	/								 			
	Presnell		7/18	16:30	W	4	6		/											
	Jaster		7/4	16:35	W	4	G		/											
	Brown		7/14	16:40	W	4	6	/	/											
	Hancock		7/18	16:50	W	4	G	1	/											
Collected/Relin	nquished By:(1)	Date	Time	Received I	Зу:	Date	Time	Ship	ping C	arrier:		-		Sam	ples Re	eceive	d Cold	? (Circle)	YES	ю
Con	M	7/19	11:30	his	I Ken	7/19	11:3	Ship	ping T	icket N	lo:			Tem	peratur	e	4.1			
Revinquished E	Sy: (2)	Date	Time	Received I	3y:	Date	Time	Spec	ial De	liverab	ie Req	uireme	nts:	1			Seal:			
han 1	4/1/ Ke	7/19	31:00m											INTA	ACT		BRO	KEN	A	BSENT
Relinquished E	By: (3)	Date	Time	Received E	Зу:	Date	Time	Spec	cial Ins	tructio	ns:			<u>'</u>		. <u></u>			· · · · · · · · · · · · · · · · · · ·	·
Relinquished E	By: (4)	Date	Time	Received E	Ву:	Date	Time	-			round	Time:								
									RUS	H _		Date	Needed	1		_ [⊐ ST	D		

TRIGON SERVICES

- GEOTECHNICAL ENGINEERING
- CONSTRUCTION MATERIALS ENGINEERING/TESTING
- SPECIAL INSPECTIONS
- FORENSIC ENGINEERING
- ENVIRONMENTAL DUE DILIGENCE/PHASE I AUDITS
- GEOTECHNICAL AND ENVIRONMENTAL DRILLING
- GROUNDWATER INVESTIGATIONS/REMEDIATION
- SITE CIVIL DESIGN ENGINEERING
- LAND PLANNING/DEVELOPMENT ENGINEERING
- STREAM AND WETLAND DELINEATION/PERMITTING
- WATER RESOURCE ENGINEERING
- WATER AND WASTEWATER ENGINEERING
- STORMWATER MANAGEMENT/PERMITTING/SPCC
- TANK INTEGRITY TESTING
- HEALTH AND SAFETY CONSULTING
- REGULATORY COMPLIANCE ENGINEERING/STRATEGIES
- WASTE MINIMIZATION STUDIES
- AIR QUALITY CONSULTING
- ATMOSPHERIC DISPERSION MODELING
- SOURCE TESTING AND CONTINUOUS EMISSIONS MONITORING
- INDOOR AIR QUALITY/INDUSTRIAL HYGIENE
- ASBESTOS AND LEAD-BASED PAINT INSPECTIONS

OFFICE LOCATIONS

Greensboro	Charlotte	Raleigh	Raleigh	Wilmington
North Carolina	North Carolina	North Carolina	North Carolina	North Carolina
336.668.0093	704.598.1049	Design and Construction	Environmental	910.256.9300
		919.755.5011	919.861.7775	